多元函数的基本概念.ppt

上传人:牧羊曲112 文档编号:5697474 上传时间:2023-08-11 格式:PPT 页数:36 大小:512KB
返回 下载 相关 举报
多元函数的基本概念.ppt_第1页
第1页 / 共36页
多元函数的基本概念.ppt_第2页
第2页 / 共36页
多元函数的基本概念.ppt_第3页
第3页 / 共36页
多元函数的基本概念.ppt_第4页
第4页 / 共36页
多元函数的基本概念.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《多元函数的基本概念.ppt》由会员分享,可在线阅读,更多相关《多元函数的基本概念.ppt(36页珍藏版)》请在三一办公上搜索。

1、一、多元函数的概念,二、多元函数的极限,三、多元函数的连续性,四、小结,第一节 多元函数的基本概念,(1)邻域,一、多元函数的概念,(2)区域,例如,,即为开集,连通的开集称为区域或开区域,例如,,例如,,有界闭区域;,无界开区域,例如,,(3)聚点,1.内点是聚点;,说明:,2.边界点是聚点;,例,(0,0)既是边界点也是聚点,3.点集E的聚点可以属于E,也可以不属于E,例如,(0,0)是聚点但不属于集合,例如,边界上的点都是聚点也都属于集合,(4)n维空间,1.n维空间的记号为,说明:,2.n维空间中两点间距离公式,3.n维空间中邻域、区域等概念,特殊地当 时,便为数轴、平面、空间两点间的

2、距离,内点、边界点、区域、聚点等概念也可定义,邻域:,设两点为,(5)二元函数的定义,类似地可定义三元及三元以上函数,例1 求 的定义域,解,所求定义域为,例2 设,求,解,多元函数也有单值性与多值性的概念.,例如:,单值分支,一元函数的单调性、奇偶性、周期性等性质的定义在多元函数中不再适用,但有界性的定义仍适用:设有n元函数y=f(x),其定义域为DRn,集合XD.若存在正数M,使对xX,有|f(x)|M,则称f(x)在X上有界,M称为f(x)在X上的一个界.,(6)二元函数 的图形,(如下页图),二元函数的图形通常是一张曲面.,例如,图形如右图.,例如,左图球面.,单值分支:,例3、已知

3、求.,例4、已知 求.,二元函数也有复合函数,二、多元函数的极限,说明:,(1)定义中 的方式是任意的;,(2)二元函数的极限也叫二重极限,(3)二元函数的极限运算法则与一元函数类似,例2 求证,证,当 时,,原结论成立,例3 求极限,解,其中,解,取,其值随k的不同而变化,,极限不存在,例5 证明 不存在,证,取,其值随k的不同而变化,,故极限不存在,确定极限不存在的方法:,找两种不同趋近方式,使二重极限存在,但两者不相等;令p(x,y)沿某一定曲线趋向于 时,极限不存在.,例6 证明 不存在,利用点函数的形式有,三、多元函数的连续性,定义3,例7 讨论函数,在(0,0)的连续性,解,取,其

4、值随k的不同而变化,,极限不存在,故函数在(0,0)处不连续,闭区域上连续函数的性质,在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次,在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次,(1)最大值和最小值定理,(2)介值定理,(3)有界定理,在有界闭区域D上的多元连续函数必定有界,多元初等函数:由常量及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数,一切多元初等函数在其定义区域内是连续的,定义区域是指包含在定义域内的区域或闭区域,例8,解,多元函数极限的概念,多元函数连续的概念,闭区域上连续函数的性质,(注意趋近方式的任意性),四、小结,多元函数的定义,思考题,思考题解答,不能.,例,取,但是 不存在.,原因为若取,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号