《合肥市职教中心李劲松.ppt》由会员分享,可在线阅读,更多相关《合肥市职教中心李劲松.ppt(12页珍藏版)》请在三一办公上搜索。
1、,合肥市职教中心 李劲松,第三章 复杂直流电路,第一节 基尔霍夫定律,第二节基尔霍夫定律的应用,第三节 叠加原理,第四节 戴维南定理,第五节 电压源与电流源的等效变换,课间休息,第一节 基尔霍夫定律,复杂电路:有两个以上的有电源的支路组成的多回路电路,运用电阻串、并联的计算方法不能将它简化成一个单回路电路,即。如下图:,一、支路、节点和回路,2.节点:三条或三条以上支路的汇交点。,节点,4.网孔:简单的不可再分的回路,1.支路:有一个或几个元件首尾相接构成的无分支电路。,3.回路:任意的闭合电路。,二、基尔霍夫电流定律(节点电流定律):,参考方向(在不知道电流实际方向时,可以任意标定支路电流方
2、向),a)电路中任意一个节点上,流入节点的电流之和,等于流出 节点的电流之和。I入=I出,+,b)在任一电路的任一节点上,电流的代数和永远等于零。,+(-)+(-)+(-)+,例题:如图,已知mA,3mA,mA,求 其余各电阻中的电流。,解:,应用基尔霍夫电流定律列出节点电流方程式:,先任意标定未知电流、的方向,如图所示。,求得其中的值是负的,表示的实际方向与标定的方向相反。,三、基尔霍夫电压定律(回路电压定律),如图:,或:,以点为起点:,回路绕行方向(可以任意选择)注意两个方程中的正、负取值。,a)在任意一个回路中,所有电压降的代数和为零。b)在任意一个闭合回路中,各段电阻上电压降的代数和
3、等于各电源电动势的代数和。,第二节基尔霍夫定律的应用,一、支路电流法:,对于一个复杂电路,先假设各支路的电流方向和回路方向,再根据基尔霍夫定律,列出方程式来求解支路电流的方法,即。,例题:如图,已知电源电动势,电阻,求各电阻中的电流。,解:(1)设各支路电流方向、回路绕行方向如图。,(2)列出节点电流方程式:(3)列出回路电压方程式:+(4)代入已知数解方程,求出各支路的电流-(5)确定各支路电流的方向。,二、回路电流法,先把复杂电路分成若干个网孔,并假设各回路的电流方向,然后根据基尔霍夫电压定律列出各回路的电压方程式,来求解电路的方法,即。,例:如图,已知电源电动势,电阻,应用回路电流法求各支路中的电流。,(2)列回路电压方程式:I11(R1+R3)I22R3=E1 I22(R3+R4+R5)I11R3+I33R4=0 I33(R2+R4)+I22R4=E2(3)解方程组,求出回路电流:11=1A,I22=-1A,I33=2A(4)确定回路电流的方向。,(1)假设回路电流I11、22和33的方向如图,解:,(5)根据回路电流的大小和方向,求各支路电 流的大小和方向:,I1=I11=1A,I2=I33=2A,I3=I11I22=2A,I4=I22+I33=1A,I5=I22=-1A,本节小结,基尔霍夫定律的应用,基 尔 霍 夫 定 律 的 内 容,制作者:李劲松,课间休息,