闭区间连续函数性质.ppt

上传人:小飞机 文档编号:6148133 上传时间:2023-09-29 格式:PPT 页数:17 大小:272.50KB
返回 下载 相关 举报
闭区间连续函数性质.ppt_第1页
第1页 / 共17页
闭区间连续函数性质.ppt_第2页
第2页 / 共17页
闭区间连续函数性质.ppt_第3页
第3页 / 共17页
闭区间连续函数性质.ppt_第4页
第4页 / 共17页
闭区间连续函数性质.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《闭区间连续函数性质.ppt》由会员分享,可在线阅读,更多相关《闭区间连续函数性质.ppt(17页珍藏版)》请在三一办公上搜索。

1、1,二、介值定理,一、最大值和最小值定理,第十节,闭区间上连续函数的性质,第一章函数与极限,2,定义:,例如,一、最大值和最小值定理,3,定理1(最大值和最小值定理)在闭区间上连续的函数一定能取到最大值和最小值.,注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.,4,定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界.,5,二、介值定理,定义:,此定理又称为根的存在性定理,6,几何解释:,7,几何解释:,证,由零点定理,推论 在闭区间上连续的函数必取得介于最大值 与最小值 之间的任何值.,8,例1,证,9,例2,证,由零点定理,10,至少有一个不超过 4

2、 的,证:,证明,令,且,根据零点定理,原命题得证.,内至少存在一点,在开区间,显然,正根.,例3,11,例4 验证方程,至少有一个正根不大于,证 设,由零点定理,至少,12,例5 设,证 假设,则至少,则至少,与已知矛盾,故,13,例6,证,由零点定理,解题思路:,辅助函数法:先作辅助函数F(x),再利用零点定理;,14,小结,四个定理:,有界性定理;最值定理;介值定理;根的存在性定理.,注意条件1闭区间;2连续函数这两点不满足,上述定理不一定成立,难点:做辅助函数,再利用零点定理证明等式,重点:最值定理;介值定理;根的存在性定理,15,思考题,下述命题是否正确?,16,思考题解答,不正确.,例函数,17,作业P74(习题110)2;3;5,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号