几种常见的曲面及其方程ppt课件.ppt

上传人:牧羊曲112 文档编号:2112826 上传时间:2023-01-12 格式:PPT 页数:32 大小:1.93MB
返回 下载 相关 举报
几种常见的曲面及其方程ppt课件.ppt_第1页
第1页 / 共32页
几种常见的曲面及其方程ppt课件.ppt_第2页
第2页 / 共32页
几种常见的曲面及其方程ppt课件.ppt_第3页
第3页 / 共32页
几种常见的曲面及其方程ppt课件.ppt_第4页
第4页 / 共32页
几种常见的曲面及其方程ppt课件.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《几种常见的曲面及其方程ppt课件.ppt》由会员分享,可在线阅读,更多相关《几种常见的曲面及其方程ppt课件.ppt(32页珍藏版)》请在三一办公上搜索。

1、,第四节,一、几种常见的曲面及其方程,二、二次曲面,三、曲线,曲面与曲线,第七章,由两点间距离公式,1.空间一动点到定点的距离为定值,该动点轨迹叫球面。,特别,当M0在原点时,球面方程为,设轨迹上动点为,定值为R,,定点,表示上(下)球面.,定点叫球心,定值叫半径。,例2.研究方程,解:配方得,此方程表示:,说明:,如下形式的三元二次方程(A 0),都可通过配方研究它的图形.,其图形可能是,的曲面.,表示怎样,半径为,的球面.,球心为,一个球面,或点,或虚轨迹.,2、柱面.,平行定直线并沿定曲线 C 移动的直线 l 形成,的轨迹叫做柱面.,抛物柱面,椭圆柱面.,经过z 轴的平面.,以上的柱面母

2、线都平行于Z轴,C 叫做准线,l 叫做母线.,圆柱面,一般地,在三维空间,柱面,柱面,平行于 x 轴;,平行于 y 轴;,平行于 z 轴;,准线 xoz 面上的曲线 l3.,母线,柱面,准线 xoy 面上的曲线 l1.,母线,准线 yoz 面上的曲线 l2.,母线,一条平面曲线,3、旋转曲面,绕其平面上一条定直线旋转,一周,所形成的曲面叫做旋转曲面.,该定直线称为旋转,轴.,例如:,建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:,故旋转曲面方程为,当绕 z 轴旋转时,若点,给定 yoz 面上曲线 C:,则有,则有,该点转到,思考:当曲线 C 绕 y 轴旋转时,方程如何?,例3.试建立顶点

3、在原点,旋转轴为z 轴,半顶角为,的圆锥面方程.,解:在yoz面上直线L 的方程为,绕z 轴旋转时,圆锥面的方程为,两边平方,例4.求坐标面 xoz 上的双曲线,分别绕 x,轴和 z 轴旋转一周所生成的旋转曲面方程.,解:绕 x 轴旋转,绕 z 轴旋转,这两种曲面都叫做旋转双曲面.,所成曲面方程为,所成曲面方程为,二、二次曲面,三元二次方程,适当选取直角坐标系可得它们的标准方程,下面仅,就几种常见标准型的特点进行介绍.,研究二次曲面特性的基本方法:截痕法,其基本类型有:,椭球面、抛物面、双曲面、锥面,的图形通常为二次曲面.,(二次项系数不全为 0),1.椭球面,(1)范围:,(2)与坐标面的交

4、线:椭圆,与,的交线为椭圆:,(4)当 ab 时为旋转椭球面;,同样,的截痕,及,也为椭圆.,当abc 时为球面.,(3)截痕:,为正数),2.抛物面,(1)椭圆抛物面,(p,q 同号),(2)双曲抛物面(鞍形曲面),特别,当 p=q 时为绕 z 轴的旋转抛物面.,(p,q 同号),3.双曲面,(1)单叶双曲面,椭圆.,时,截痕为,(实轴平行于x 轴;,虚轴平行于z 轴),平面,上的截痕情况:,双曲线:,虚轴平行于x 轴),时,截痕为,时,截痕为,(实轴平行于z 轴;,相交直线:,双曲线:,(2)双叶双曲面,双曲线,椭圆,注意单叶双曲面与双叶双曲面的区别:,双曲线,单叶双曲面,双叶双曲面,图形

5、,4.椭圆锥面,椭圆,在平面 x0 或 y0 上的截痕为过原点的两直线.,可以证明,椭圆上任一点与原点的连线均在曲面上.,(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换,得到,见书 P316),内容小结,1.空间曲面,三元方程,球面,旋转曲面,如,曲线,绕 z 轴的旋转曲面:,柱面,如,曲面,表示母线平行 z 轴的柱面.,又如,椭圆柱面,双曲柱面,抛物柱面等.,2.二次曲面,三元二次方程,椭球面,抛物面:,椭圆抛物面,双曲抛物面,双曲面:,单叶双曲面,双叶双曲面,椭圆锥面:,1、空间曲线的一般方程,空间曲线可视为两曲面的交线,其一般方程为方程组,例如,方程组,表示圆柱面与平面的交线 C.

6、,三、曲线,又如,方程组,表示上半球面与圆柱面的交线C.,2、空间曲线的参数方程,将曲线C上的动点坐标x,y,z表示成参数t 的函数:,称它为空间曲线的 参数方程.,例如,圆柱螺旋线,的参数方程为,上升高度,称为螺距.,例1.将下列曲线化为参数方程表示:,解:(1),根据第一方程引入参数,(2)将第二方程变形为,故所求为,得所求为,3、空间曲线在坐标面上的投影,设空间曲线 C 的一般方程为,消去 z 得投影柱面,则C 在xoy 面上的投影曲线 C为,消去 x 得C 在yoz 面上的投影曲线方程,消去y 得C 在zox 面上的投影曲线方程,又如,所围的立体在 xoy 面上的投影区域为:,上半球面,和锥面,在 xoy 面上的投影曲线,二者交线,所围圆域:,二者交线在,xoy 面上的投影曲线所围之域.,(2),(1),几种常见的曲线及在坐标平面上的投影,(3),P324 题2(1),作业,P32 3,4,5,6,7,8,9,10,11,12,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号