《图像处理数学基础.docx》由会员分享,可在线阅读,更多相关《图像处理数学基础.docx(8页珍藏版)》请在三一办公上搜索。
1、图像处理数学基础图像处理中的数学原理详解数字图像处理技术的开发对数学基础的要求很高,一些不断涌现的新方法中,眼花缭乱的数学推导令很多期望深入研究的人望而却步。一个正规理工科学生大致已经具备了包括微积分、线性代数、概率论在内的数学基础。但在分析一些图像处理算法的原理时,好像还是感觉无从入手。实际所牵涉出来的问题主要可归结为如下几个原因:1)微积分、线性代数、概率论这些是非常重要的数学基础,但显示不是这些课程中所有的内容都在图像处理算法中有直接应用;2)当你将图像处理和数学分开来学的时候,其实并没有设法建立它们二者的联系;3)一些新方法或者所谓的高大上的算法之基础已经超过了上面三个数学课程所探讨的
2、基本领域,这又涉及到偏微分方程、变分法、复变函数、实变函数、泛函分析等等;4)如果你不是数学科班出身,要想自学上面所谈到所有内容,工作量实在太过浩繁,恐怕精力也难以顾及。业余时间,笔者结合自己对图像处理的学习和实践,大致总结了一部分图像处理研究中所需的数学原理基础。这些内容主要涉及微积分、向量分析、场论、泛函分析、偏微分方程、复变函数、变分法等。线性代数和概率论笔者认为比较基础,于是并没有将其收入。我总结、归纳、提取了上面这些数学课程中,在研究图像处理最容易碰到也最需要知道的一些知识点,然后采取一种循序渐进的方式将它们重新组织到了一起。并结合具体的图像处理算法讨论来讲解这些数学知识的运用。从而
3、建立数学知识与图像处理之间的一座桥梁。这部分内容主要是笔者日常研究和学习的一个总结,我也没有将其出版的计划,毕竟这个Topic还是有点小众而且艰深。但之前我撷取了其中的一小部分发到了网上,已经有读者表现出了浓厚的兴趣,并询问哪里能找到其他的部分。所以说到分享,我将更愿意在博客上逐渐把它贴出来,而且是系统的,按顺序的发布。全部内容也不太多,一共只有六个Chapters,大概两三百页。作为这部分内容的开始,下面给出的是“总纲”。我会逐渐将内容全部发布到我的博客上,供有需要的朋友参阅。但由于个人精力十分有限,这项工作显然不能一蹴而就。如果读者对哪个子标题比较感兴趣,可以在博客下方留言,我会适当调整发
4、布的优先顺序。祝分享快乐,研究快乐!第1章 必不可少的数学基础1.1 极限及其应用1.1.1 数列的极限1.1.2 级数的敛散1.1.3 函数的极限1.1.4 极限的应用1.2 微分中值定理1.2.1 罗尔中值定理1.2.2 拉格朗日中值定理1.2.3柯西中值定理1.2.4 泰勒公式1.3 向量代数与场论1.3.1 牛顿-莱布尼茨公式1.3.2 内积与外积1.3.3 方向导数与梯度1.3.4 曲线积分1.3.5 格林公式1.3.6 积分与路径无关条件1.3.7 曲面积分1.3.8 高斯公式与散度1.3.9 斯托克斯公式与旋度1.4 傅立叶级数展开1.4.1 函数项级数的概念1.4.2 函数项级
5、数的性质1.4.3 傅立叶级数的概念1.4.4 傅立叶变换的由来1.4.5 卷积定理及其证明本章参考文献第2章 更进一步的数学内容2.1 复变函数论初步2.1.1 解析函数2.1.2 复变积分2.1.3 基本定理2.1.4 级数展开2.2 勒贝格积分理论2.2.1 点集的勒贝格测度2.2.2 可测函数及其性质2.2.3 勒贝格积分的定义2.2.4 积分序列极限定理2.3 泛函与抽象空间2.3.1 线性空间2.3.2 距离空间2.3.3 赋范空间2.3.4 巴拿赫空间2.3.5 内积空间2.3.6 希尔伯特空间2.3.7 索伯列夫空间2.4 从泛函到变分法2.4.1 理解泛函的概念2.4.2 关
6、于的变分概念2.4.3 变分法的基本方程2.4.4 理解哈密尔顿原理2.4.5 等式约束下的变分2.4.6 巴拿赫不动点定理2.4.7 有界变差函数空间本章参考文献第3章 无所不在的高斯分布3.1 卷积积分与邻域处理3.1.1 卷积积分的概念3.1.2 模板与邻域处理3.1.3 图像的高斯平滑3.2 边缘检测与微分算子3.2.1 哈密尔顿算子3.2.2 拉普拉斯算子3.2.3 高斯-拉普拉斯算子3.2.4 高斯差分算子3.3 保持边缘的平滑处理3.3.1 双边滤波算法应用3.3.2 各向异性扩散滤波3.3.3 基于全变差的方法3.4 数学物理方程的应用3.4.1 泊松方程的推导3.4.2 图像
7、的泊松编辑3.4.3 离散化数值求解3.5 多尺度空间及其构建3.5.1 高斯滤波与多尺度空间的构建3.5.2 基于各向异性扩散的尺度空间本章参考文献第4章 图像编码的理论基础4.1 率失真函数4.2 香农下边界4.3 无记忆高斯信源4.4 有记忆高斯信源4.5 高斯分布的意义本章参考文献第5章 子带编码与小波变换5.1 子带编码基本原理5.1.1 数字信号处理基础5.1.2 多抽样率信号处理5.1.3 图像信息子带分解5.2 哈尔函数及其变换5.2.1 哈尔函数的定义5.2.2 哈尔函数的性质5.2.3 酉矩阵与酉变换5.2.4 二维离散线性变换5.2.5 哈尔基函数5.2.6 哈尔变换5.
8、3 小波及其数学原理5.3.1 小波的历史5.3.2 理解小波的概念5.3.3 多分辨率分析5.3.4 小波函数的构建5.3.5 小波序列展开5.3.6 离散小波变换5.3.7 连续小波变换5.3.8 小波的容许条件与基本特征5.4 快速小波变换算法5.4.1 快速小波正变换5.4.2 快速小波逆变换5.4.3 图像的小波变换本章参考文献第6章 正交变换与图像压缩6.1 傅立叶变换6.1.1 信号处理中的傅立叶变换6.1.2 数字图像的傅立叶变换6.1.3 快速傅立叶变换的算法6.2 离散余弦变换6.2.1 基本概念及数学描述6.2.2 离散余弦变换的快速算法6.2.3 离散余弦变换的意义与应用6.3 沃尔什-阿达马变换6.3.1 沃尔什函数6.3.2 离散沃尔什变换及其快速算法6.3.3 沃尔什变换的应用6.4 卡洛南-洛伊变换6.4.1 一些必备的基础概念6.4.2 主成分变换的推导6.4.3 主成分变换的实现6.4.4 基于K-L变换的图像压缩本章参考文献