《机器人电机驱动芯片001L298N.doc》由会员分享,可在线阅读,更多相关《机器人电机驱动芯片001L298N.doc(14页珍藏版)》请在三一办公上搜索。
1、. OPERATING SUPPLY VOLTAGE UP TO 46 V.TOTAL DC CURRENT UP TO 4 ALOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION.LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 VL298DUAL FULL-BRIDGE DRIVER(HIGH NOISE IMMUNITY)DESCRIPTIONThe L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages
2、. It is ahigh voltage, high current dual full-bridge driver de-Multiw att15PowerSO20signed to accept standardTTL logic levels and driveinductive loads such as relays, solenoids, DC andstepping motors. Two enableinputs are provided toenable or disable the deviceindependentlyof the in-put signals. The
3、 emitters of the lower transistors ofeach bridge are connected together and the corre-sponding external terminal can be used for the con-BLOCK DIAGRAMJenuary 2000O RDERING NUMBERS :L298N (Mult iwatt Vert. )L298HN (Multiwatt Horiz. )L298P (PowerSO20)nectionof an externalsensing resistor. An additiona
4、lsupply input is provided so that the logic works at alower voltage.1/13L298ABSOLUTE MAXIMUM RATINGSSymb olVSPower SupplyVSSLogic Supply VoltageVI,VenInput and Enable VoltageParameterValue5070.3 to 7Uni tVVVIOPeak Output Current (each Channel) Non Repetitive (t = 100s)Repetitive (80% on 20% off; ton
5、 = 10ms)DC Operation32.52AAAVsensSensing Voltage1 to 2.3VPtotTopTotal Power Dissipation (Tcase = 75C)Junction Operating Temperature2525 to 130WCTstg, TjStorage and Junction TemperaturePIN CONNECTIONS (top view)Multiwatt15TAB CONNECTED TO PIN 8GND1Sense A2N.C.3Out 14151413121110987654321D95IN240A2019
6、181740 to 150CURRENT SENSING BOUTPUT 4OUTPUT 3INPUT 4ENABLE BINPUT 3LOGIC SUPPLY VOLTAGE VSSGNDINPUT 2ENABLE AINPUT 1SUPPLY VOLTAGE VSOUTPUT 2OUTPUT 1CURRENT SENSING AGNDSense BN.C.Out 4CTHERMAL DATASymb olOut 25VS6Input 17Enable A8Input 29GND10ParameterPowerSO20D95IN239161514131211Out 3Input 4Enabl
7、e BInput 3VSSGNDPo werSO20Mu ltiwatt15Uni tRth j-caseThermal Resistance Junction-caseRth j-ambThermal Resistance Junction-ambient(*) Mounted on aluminum substrate2/13Max.Max.13 (*)335C/WC/WPIN FUNCTIONS (refer to the block diagram)L298MW. 15Po werSONameFun ction1;152;19Sense A; Sense BBetween this p
8、in and ground is connected the sense resistor tocontrol the current of the load.2;344;56Out 1; Out 2VSOutputs of the Bridge A; the current that flows through the loadconnected between these two pins is monitored at pin 1.Supply Voltage for the Power Output Stages.A non-inductive 100nF capacitor must
9、 be connected between thispin and ground.5;76;117;98;14Input 1; Input 2TTL Compatible Inputs of the Bridge A.Enable A; Enable BTTL Compatible Enable Input: the L state disables the bridge A(enable A) and/or the bridge B (enable B).891,10,11,2012GNDVSSGround.Supply Voltage for the Logic Blocks. A100n
10、F capacitor must beconnected between this pin and ground.10; 1213;15Input 3; Input 4TTL Compatible Inputs of the Bridge B.13; 1416;173;18Out 3; Out 4N.C.Outputs of the Bridge B. The current that flows through the loadconnected between these two pins is monitored at pin 15.Not ConnectedELECTRICAL CHA
11、RACTERISTICS (VS= 42V; VSS = 5V, Tj= 25C; unless otherwise specified)SymbolParameterTest Co ndi tionsMin .Typ .Max.Uni tVSSupply Voltage (pin 4)VSSLogic Supply Voltage (pin 9)Operative ConditionVIH +2.54.55467VVISQuiescent Supply Current (pin 4)Ven= H; IL= 0Ven = LISSQuiescent Current from VSS(pin 9
12、) Ven= H; IL= 0Ven = LViLInput Low Voltage(pins 5, 7, 10, 12)ViHInput High Voltage(pins 5, 7, 10, 12)IiLLow Voltage Input CurrentVi = L(pins 5, 7, 10, 12)Vi= LVi = HVi= XVi= LVi = HVi= X0.32.3135024722704361261.5VSS10mAmAmAmAmAmAVVAIiHHigh Voltage Input Current(pins 5, 7, 10, 12)Ven= LEnable Low Vol
13、tage (pins 6, 11)Ven = HEnable High Voltage (pins 6, 11)Ien = LLow Voltage Enable Current(pins 6, 11)Ien = HHigh Voltage Enable Current(pins 6, 11)Vi = H VSS 0.6VVen = LVen = H VSS0.6V0.32.330301001.5VSS10100AVVAAVCEsat (H)Source Saturation VoltageVCEsat (L)Sink Saturation VoltageVCEsatTotal DropVse
14、nsSensing Voltage (pins 1, 15)IL= 1AIL= 2AIL= 1A(5)IL= 2A(5)IL= 1A(5)IL= 2A(5)0.951.3520.851.21.71.801 (1)1.72.71.62.33.24.92VVVVVVV3/13L298ELECTRICAL CHARACTERISTICS (continued)SymbolParameterTest Co ndi tionsMin .Typ .Max.Uni tT1(Vi)Source Current Turn-off DelayT2(Vi)Source Current Fall TimeT3(Vi)
15、Source Current Turn-on DelayT4(Vi)Source Current Rise TimeT5 (Vi)Sink Current Turn-off DelayT6(Vi)Sink Current Fall TimeT7 (Vi)Sink Current Turn-on DelayT8(Vi)Sink Current Rise Time0.5 Vito 0.9 IL(2); (4)0.9 ILto 0.1 IL(2); (4)0.5 Vi to 0.1 IL(2); (4)0.1 ILto 0.9 IL(2); (4)0.5 Vi to 0.9 IL(3); (4)0.
16、9 ILto 0.1 IL(3); (4)0.5 Vi to 0.9 IL(3); (4)0.1 ILto 0.9 IL(3); (4)1.50.220.70.70.251.60.2ssssssssfc (Vi)Commutation FrequencyT1 (Ven)Source Current Turn-off DelayT2 (Ven)Source Current Fall TimeT3 (Ven)Source Current Turn-on DelayT4(Ven)Source Current Rise TimeT5 (Ven)Sink Current Turn-off DelayT6
17、(Ven)Sink Current Fall TimeT7(Ven)Sink Current Turn-on DelayT8 (Ven)Sink Current Rise TimeIL= 2A0.5 Ven to 0.9 IL(2); (4)0.9 ILto 0.1 IL(2); (4)0.5 Ven to 0.1 IL(2); (4)0.1 ILto 0.9 IL(2); (4)0.5 Ven to 0.9 IL(3); (4)0.9 ILto 0.1 IL(3); (4)0.5 Vento 0.9 IL(3); (4)0.1 ILto 0.9 IL(3); (4)25310.30.42.2
18、0.350.250.140KHzssssssss1) 1)Sensing voltage can be 1 V for t 50 sec; in steady state Vsens min 0.5 V.2) See fig. 2.3) See fig. 4.4) The load must be a pure resistor.Figure 1 : Typical Saturation Voltage vs. OutputCurrent.4/13Figure 2 : Switching Times Test Circuits.Note :For INPUT Switching, set EN
19、 = HFor ENABLESwitching, set IN = HFigure 3 : Source Current Delay Times vs. Input or Enable Switching.Figure 4 : Switching Times Test Circuits.Note :For INPUT Switching, set EN = HFor ENABLE Switching, set IN = LL2985/13L298Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.Figure 6
20、 : Bidirectional DC Motor Control.In pu tsFu nctio nVen = HVen = LC = H ; D = LForwardC = L ; D = HReverseC = DFast Motor StopC = X ; D = XFree RunningMotor Stop6/13L = LowH = HighX = Dont careL298Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel
21、 4and channel 2 with channel 3.APPLICATION INFORMATION (Refer to the block diagram)1.1. POWER OUTPUT STAGEThe L298integratestwo poweroutputstages(A ; B).The power output stage is a bridge configurationand its outputs can drive an inductive load in com-mon or differenzial mode, dependingon the state
22、ofthe inputs. The current that flows through the loadcomes out from the bridge at the sense output : anexternal resistor (RSA ; RSB.) allows to detect the in-tensity of this current.1.2. INPUT STAGEEach bridge is driven by means of four gates the in-put of which are In1 ; In2 ; EnA and In3 ; In4 ; E
23、nB.The In inputs set the bridge state when The En inputis high ; a lowstate of the En inputinhibitsthe bridge.All the inputs are TTL compatible.2. SUGGESTIONSA non inductive capacitor, usually of 100 nF, mustbe foreseen between both Vs and Vss, to ground,as near as possible to GND pin. When the larg
24、e ca-pacitor of the power supply is too far from the IC, asecond smaller one must be foreseen near theL298.The sense resistor, not of a wire wound type, mustbe grounded near the negative pole of Vs that mustbe near the GND pin of the I.C.Each input must be connected to the source of thedriving signa
25、ls by means of a very short path.Turn-On and Turn-Off : Before to Turn-ON the Sup-ply Voltageand beforeto Turnit OFF, the Enablein-put must be driven to the Low state.3. APPLICATIONSFig 6 shows a bidirectional DC motor control Sche-matic Diagram for which only one bridge is needed.The external bridg
26、e of diodes D1 to D4 is made byfour fast recovery elements (trr 200 nsec) thatmust be chosen of a VF as low as possible at theworst case of the load current.The sense outputvoltage can be used to control thecurrent amplitude by chopping the inputs, or to pro-vide overcurrent protection by switching
27、low the en-able input.The brake function (Fast motor stop) requires thatthe Absolute Maximum Rating of 2 Amps mustnever be overcome.When the repetitive peak current needed from theload is higher than 2 Amps, a paralleled configura-tion can be chosen (See Fig.7).An external bridge of diodes are requi
28、red when in-ductive loads are driven and when the inputs of theIC are chopped; Shottkydiodeswould be preferred.7/13L298This solution can drive until 3 Amps In DC operationand until 3.5 Amps of a repetitive peak current.OnFig 8 it is shownthe driving ofa twophasebipolarstepper motor ; the needed sign
29、als to drive the in-puts of the L298 are generated, in this example,from the IC L297.Fig 9 shows an example of P.C.B. designed for theapplication of Fig 8.Figure 8 : Two Phase Bipolar Stepper Motor Circuit.Fig 10 shows a second two phase bipolar steppermotor control circuit where the current is cont
30、rolledby the I.C. L6506.This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.RS1 = RS2 = 0.5 VD1 to D8 = 2 A Fast diodes8/13F 1.2 V I = 2 Atrr 200 nsFigure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).L298Figure
31、 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.RRand Rsense depend from the load current9/13L298DIM.mminchABCDMIN.TYP.MAX.MIN.TYP.MAX.50.1972.650.1041.60.06310.039OUTLINE ANDMECHANICAL DATAE0.49F0.660.550.0190.750.0260.0220.030G1.021.271.520.0400.0500.060
32、G117.5317.7818.030.6900.7000.710H119.6H220.20.7720.795L21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886 L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L72.652.90.1040.114M4.254.554.850.1670.1790.191M14.635.085.530.1820.2000.218S1.92.60.0750.102S11.9Dia13.651
33、0/132.60.0753.850.1440.1020.152Multiwatt15 VDIM.mminchOUTLINE ANDL298ABCMIN.TYP.MAX.MIN.TYP.MAX.50.1972.650.1041.60.063MECHANICAL DATAE0.49F0.660.550.0190.750.0260.0220.030G1.141.271.40.0450.0500.055G117.5717.7817.910.6920.7000.705H119.6H2LL1L220.5718.032.5420.20.7720.8100.7100.1000.795L317.2517.517
34、.750.6790.6890.699L410.310.710.90.4060.4210.429L5L6L72.65S1.9S11.9Dia13.655.282.382.90.1042.60.0752.60.0753.850.1440.2080.0940.1140.1020.1020.152Multiwatt15 H11/13L298DIM.mminchAMIN.TYP.MAX.MIN.TYP.MAX.3.60.142OUTLINE ANDMECHANICAL DATAa10.1a20.30.0043.30.0120.130a3b00.40.10.0000.530.0160.0040.021c0
35、.23D (1)15.8D19.4E13.9ee3E1 (1)10.9E2E35.8G0H15.5hL0.8NST1.2711.43100.320.009160.6229.80.37014.50.54711.10.4292.96.20.2280.10.00015.90.6101.11.10.03110 (max.)8 (max.)0.0500.4500.3940.0130.6300.3860.5700.4370.1140.2440.0040.6260.0430.043JEDEC MO-166PowerSO20(1) ”D and F” do not include mold flash or protrusions.- Mold flash or protrusions shall not exceed 0.15 mm (0.006”).- Critical dimensions: ”E”, ”G” and ”a3”NNbeDETAIL Ae3a2ARDETAIL BEa1c20HD11a3leadDETAIL B0.35DETAIL AslugGage Plane- C -12/13E2h x 451T10E1PSO20MECS