固体物理教程思考题.doc

上传人:仙人指路1688 文档编号:4211300 上传时间:2023-04-10 格式:DOC 页数:34 大小:613.50KB
返回 下载 相关 举报
固体物理教程思考题.doc_第1页
第1页 / 共34页
固体物理教程思考题.doc_第2页
第2页 / 共34页
固体物理教程思考题.doc_第3页
第3页 / 共34页
固体物理教程思考题.doc_第4页
第4页 / 共34页
固体物理教程思考题.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《固体物理教程思考题.doc》由会员分享,可在线阅读,更多相关《固体物理教程思考题.doc(34页珍藏版)》请在三一办公上搜索。

1、1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比.设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为 , 晶胞的体积为 , 一个晶胞包含两个原子, 一个原子占的体积为 ,单位体积晶体中的原子数为 ; 面心立方晶胞的边长为 , 晶胞的体积为 , 一个晶胞包含四个原子, 一个原子占的体积为 , 单位体积晶体中的原子数为 . 因此, 同体积的体心和面心立方晶体中的原子数之比为 =0.272.2. 解理面是面指数低的晶面还是指数高的晶面?为什么?晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族

2、的指数低, 所以解理面是面指数低的晶面.3. 基矢为 , , 的晶体为何种结构? 若 + , 又为何种结构? 为什么? 有已知条件, 可计算出晶体的原胞的体积.由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量, , . 对应体心立方结构. 根据14题可以验证, 满足选作基矢的充分条件.可见基矢为 , , 的晶体为体心立方结构. 若+ ,则晶体的原胞的体积,该晶体仍为体心立方结构.4. 若 与 平行, 是否是 的整数倍? 以体心立方和面心立方结构证明之.若 与 平行, 一定是 的整数倍. 对体心立方结构, 由(1.2)式可知, , ,=h +k +l =(k+l

3、) (l+h) (h+k) =p =p(l1 +l2 +l3 ), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数. 对于面心立方结构, 由(1.3)式可知, , , ,=h +k +l =(-h+k+l) +(h-k+l) +(h+k-l) =p = p(l1 +l2 +l3 ),其中p是(-h+k+l)、(-k+h+l)和(h-k+l)的公约(整)数.5. 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢 、 和 重合,除O点外,OA、OB和OC上是否有格点? 若ABC面的指数为(234),情况又如何?晶面族(123)截 、 和 分别为1、2、3等

4、份,ABC面是离原点O最近的晶面,OA的长度等于 的长度,OB的长度等于 的长度的1/2,OC的长度等于 的长度的1/3,所以只有A点是格点. 若ABC面的指数为(234)的晶面族, 则A、B和C都不是格点.6. 验证晶面( ),( )和(012)是否属于同一晶带. 若是同一晶带, 其带轴方向的晶列指数是什么?由习题12可知,若( ),( )和(012)属于同一晶带, 则由它们构成的行列式的值必定为0.可以验证 =0,说明( ),( )和(012)属于同一晶带. 晶带中任两晶面的交线的方向即是带轴的方向. 由习题13可知, 带轴方向晶列l1l2l3的取值为 l1= =1, l2= =2, l3

5、= =1.7带轴为001的晶带各晶面,其面指数有何特点? 带轴为001的晶带各晶面平行于001方向,即各晶面平行于晶胞坐标系的 轴或原胞坐标系的 轴,各晶面的面指数形为(hk0)或(h1h20), 即第三个数字一定为0.8. 与晶列l1l2l3垂直的倒格面的面指数是什么? 正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式 h1 +h2 +h3 垂直, 则倒格晶面(l1l2l3)与正格矢 l1 + l2 + l3 正交. 即晶列l1l2l3与倒格面(l1l2l3) 垂直.9. 在结晶学中, 晶胞是按晶体的什么特性选取的? 在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考

6、虑晶体的宏观对称性.10. 六角密积属何种晶系? 一个晶胞包含几个原子? 六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.11. 体心立方元素晶体, 111方向上的结晶学周期为多大? 实际周期为多大? 结晶学的晶胞,其基矢为 ,只考虑由格矢 h +k +l 构成的格点. 因此, 体心立方元素晶体111方向上的结晶学周期为 , 但实际周期为 /2.12. 面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内? 周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图1.9可知密勒指数(111)可以证明原胞坐标系中的面指数也为(11

7、1)是一个密排面晶面族, 最小的晶列周期为 . 根据同族晶面族的性质, 周期最小的晶列处于111面内.13. 在晶体衍射中,为什么不能用可见光? 晶体中原子间距的数量级为 米,要使原子晶格成为光波的衍射光栅,光波的波长应小于 米. 但可见光的波长为7.64.0 米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.14. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的

8、晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式 可知, 面间距 大的晶面, 对应一个小的光的掠射角 . 面间距 小的晶面, 对应一个大的光的掠射角 . 越大, 光的透射能力就越强, 反射能力就越弱.15. 温度升高时, 衍射角如何变化? X光波长变化时, 衍射角如何变化? 温度升高时, 由于热膨胀, 面间距 逐渐变大. 由布拉格反射公式 可知, 对应同一级衍射, 当X光波长不变时, 面间距 逐渐变大, 衍射角 逐渐变小.所以温度升高, 衍射角变小.当温度不变, X光波长变大时, 对于同一晶面族, 衍射角 随之变大.16. 面心立方元素晶

9、体, 密勒指数(100)和(110)面, 原胞坐标系中的一级衍射, 分别对应晶胞坐标系中的几级衍射? 对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得为( ), p=1. 由(1.33)式可知, ; 由(1.16)和(1.18)两式可知, ; 再由(1.26)和(1.27)两式可知, n=2n. 即对于面心立方元素晶体, 对应密勒指数(100)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的二级衍射. 对于面心立方元素晶体, 对应密勒指数(110)的原胞坐标系的面指数可由(1.34)式求得为(001), p=2. 由(1.33)式可知, ; 由(1.

10、16)和(1.18)两式可知, ; 再由(1.26)和(1.27)两式可知, n=n, 即对于面心立方元素晶体, 对应密勒指数(110)晶面族的原胞坐标系中的一级衍射, 对应晶胞坐标系中的一级衍射.17. 由KCl的衍射强度与衍射面的关系, 说明KCl的衍射条件与简立方元素晶体的衍射条件等效.Cl 与K是原子序数相邻的两个元素, 当Cl原子俘获K原子最外层的一个电子结合成典型的离子晶体后, 与 的最外壳层都为满壳层, 原子核外的电子数和壳层数都相同, 它们的离子散射因子都相同. 因此, 对X光衍射来说, 可把 与 看成同一种原子. KCl与NaCl结构相同, 因此, 对X光衍射来说, KCl的

11、衍射条件与简立方元素晶体等效.由KCl的衍射强度与衍射面的关系也能说明KCl的衍射条件与简立方元素晶体的衍射条件等效. 一个KCl晶胞包含4个 离子和4个 离子,它们的坐标:(000)( )( )( ):( )( )( )( )由(1.45)式可求得衍射强度Ihkl与衍射面(hkl)的关系Ihkl= 1+cos 由于 等于 , 所以由上式可得出衍射面指数 全为偶数时, 衍射强度才极大. 衍射面指数的平方和 : 4, 8, 12, 16, 20, 24. 以上诸式中的n由 决定. 如果从X光衍射的角度把KCl看成简立方元素晶体, 则其晶格常数为 , 布拉格反射公式化为 显然 , 衍射面指数平方和

12、 : 1, 2, 3, 4, 5, 6. 这正是简立方元素晶体的衍射规律.18. 金刚石和硅、锗的几何结构因子有何异同? 取几何结构因子的(1.44)表达式 , 其中uj,vj,wj是任一个晶胞内,第j个原子的位置矢量在 轴上投影的系数. 金刚石和硅、锗具有相同的结构, 尽管它们的 大小不相同, 但第j个原子的位置矢量在 轴上投影的系数相同. 如果认为晶胞内各个原子的散射因子 都一样, 则几何结构因子化为 .在这种情况下金刚石和硅、锗的几何结构因子的求和部分相同. 由于金刚石和硅、锗原子中的电子数和分布不同, 几何结构因子中的原子散射因子 不会相同. 19. 旋转单晶法中, 将胶片卷成以转轴为

13、轴的圆筒, 胶片上的感光线是否等间距? 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 衍射线构成了一个个圆锥面. 如果胶片上的感光线如图所示是等间距, 则应有关系式 tg .其中R是圆筒半径, d是假设等间距的感光线间距, 是各个圆锥面与垂直于转轴的平面的夹角. 由该关系式可得sin ,即 与整数m不成正比. 但可以证明.即 与整数m成正比(参见本章习题23). 也就是说, 旋转单晶法中, 将胶片卷成以转轴为轴的圆筒, 胶片上的感光线不是等间距的. 20. 如图1.33所示, 哪一个衍射环感光最重? 为什么? 最小衍射环感光最重. 由布拉格反射公式可知, 对应掠射角 最小的晶面族具有最大的面间

14、距. 面间距最大的晶面上的原子密度最大, 这样的晶面对射线的反射(衍射)作用最强. 最小衍射环对应最小的掠射角,它的感光最重.1.是否有与库仑力无关的晶体结合类型?共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子

15、形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力. 3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能. 原子的动能与原子间的相互作用势能之和为晶体的内能. 在0K时, 原子还存在零点振动能. 但零

16、点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能. 4.原子间的排斥作用取决于什么原因?相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠. 5. 原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么? 在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶

17、体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为 , 当相邻原子间的距离 时, 吸引力起主导作用; 当相邻原子间的距离 时, 吸引力起主导作用; 当相邻原子间的距离 时, 排斥力起主导作用. 当固体受挤压时, , 原子间的吸引力抗击着这一形变. 因此, 固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力. 14.你是如何理解弹性的, 当施加一定力, 形变大的弹性强呢, 还是形变小的强?对于弹性形变, 相邻原子间的距离在 附近变化. 令 , 则有因为 是相对形变, 弹性力学称为应变, 并计作S, 所以原子间的作用力再令,.可

18、见, 当施加一定力, 形变S大的固体c小, 形变S小的固体c大. 固体的弹性是固体的属性, 它与外力和形变无关. 弹性常数c是固体的属性, 它的大小可作为固体弹性强弱的度量. 因此, 当施加一定力, 形变大的弹性弱, 形变小的强. 从这种意义上说, 金刚石的弹性最强.15.拉伸一长棒, 任一横截面上的应力是什么方向? 压缩时, 又是什么方向? 如上图所示, 在长棒中取一横截面, 长棒被拉伸时, 从截面的右边看, 应力向右, 但从截面的左边看, 应力向左. 压缩时, 如下图所示, 应力方向与拉伸时正相反. 可见, 应力方向依赖于所取截面的外法线矢量的方向. 16.固体中某一面积元两边的应力有何关

19、系?以上题为例, 在长棒中平行于横截面取一很薄的体积元, 拉伸时体积元两边受的应力如图所示. 压缩时体积元两边受的应力如下图所示. 当体积元无限薄, 体积元将变成面积元. 从以上两图可以看出, 面积元两边的应力大小相等方向相反. 17.沿某立方晶体一晶轴取一细长棒做拉伸实验, 忽略宽度和厚度的形变, 由此能否测出弹性劲度常数 ?立方晶体 轴是等价的, 设长棒方向为x( , 或 , 或 )轴方向, 做拉伸实验时若忽略宽度和厚度的形变, 则只有应力 应变 不为0, 其它应力应变分量都为0. 由(2.55)可得 . 设长棒的横截面积为A, 长度为L, 拉伸力为F, 伸长量为 , 则有: . 于是,

20、.18.若把上题等价成弹簧的形变, 弹簧受的力 , 与 有何关系? 上题中长棒受的力,长棒的伸长量 即是弹簧的伸长量x. 因此, 可见, 弹簧的弹性系数 与弹性劲度常数的量纲是不同的.19.固体中的应力与理想流体中的压强有何关系? 固体受挤压时, 固体中的正应力 与理想流体中的压强是等价的, 但 不同于理想流体中的压强概念. 因为压强的作用力与所考虑截面垂直, 而 与所考虑截面平行. 也就是说, 理想流体中不存在与所考虑截面平行的作用力. 这是因为理想流体分子间的距离比固体原子间距大得多, 流层与流层分子间不存在切向作用力. 20.固体中的弹性波与理想流体中的传播的波有何差异? 为什么?理想流

21、体中只能传播纵波. 固体中不仅能传播纵波, 还能传播切变波. 这是因为理想流体分子间距离大, 分子间不存在切向作用力, 只存在纵向作用力;而固体原子间距离小, 原子间不仅存在纵向作用力, 还存在切向作用力.1. 相距为不是晶格常数倍数的两个同种原子, 其最大振幅是否相同? 以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由本教科书的(3.16)可得两原子振幅之比 (1)其中m 原子的质量. 由本教科书的(3.20)和(3.21)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得

22、声学波和光学波的振幅之比分别为 , (4) . (5)由于 = ,则由(4)(5)两式可得, . 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.2. 引入玻恩卡门条件的理由是什么?(1) 方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其

23、它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2) 与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定 的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书3.2与3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式

24、数目是否是一 11. 长声学格波能否导致离子晶体的宏观极化? 长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.12. 金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等? 对KCl晶体, 结论又是什么? 长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 电场的方向是阻滞离子的位移, 使得有效恢复力系数变大, 对应的格波的频率变高. 长光学格横波不引起离子的位移, 不产生极化电场, 格波的频率不变

25、. 金刚石不是离子晶体, 其长光学纵波频率与同波矢的长光学格横波频率相等. 而KCl晶体是离子晶体, 它的长光学纵波频率与同波矢的长光学格横波频率不相等, 长光学纵波频率大于同波矢的长光学格横波频率.13. 何谓极化声子? 何谓电磁声子?长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵波声子为极化声子.由本教科书的(3.103)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长光学横波声子为电磁声子.14. 你认为简单晶格存在强烈的红外吸收吗?实验已经证实, 离子晶体能强烈吸收远红外光波. 这种现象产生的根源是离子晶体中的长光学横波

26、能与远红外电磁场发生强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.15. 对于光学横波, 对应什么物理图象? 格波的频率 与 成正比. 说明该光学横波对应的恢复力系数 . 时, 恢复力消失, 发生了位移的离子再也回不到原来的平衡位置, 而到达另一平衡位置, 即离子晶体结构发生了改变(称为相变). 在这一新的结构中, 正负离子存在固定的位16. 爱因斯坦模型在低温下与实验存在偏差的根源是什么? 按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为 , 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考

27、虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.17. 在甚低温下, 不考虑光学波对热容的贡献合理吗?参考本教科书(3.119)式, 可得到光学波对热容贡献的表达式.在甚低温下, 对于光学波, , 上式简化为.以上两式中 是光学波的模式密度, 在简谐近似下, 它与温度无关. 在甚低温下, , 即光学波对热容的贡献可以忽略. 也就是说, 在甚低温下, 不考虑光学波对热容的贡献是合理的. 从声子能量来说, 光学波声子的能量 很大(大于短声学波声子的能量), 它对应振幅很大的格波的振动, 这种振动只有温度很高时才能得到激发. 因此, 在甚低温下, 晶体中不存在光学波.18. 在甚低温

28、下, 德拜模型为什么与实验相符? 在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.19. 在绝对零度时还有格波存在吗? 若存在, 格波间还有能量交换吗?频率为 的格波的振动能为,其中 是由 个声子携带的热振动能, ( )是零点振动能, 声子数.绝对零度时, =0. 频率为 的格波的振动能只剩下零点振动能. 格波间交换能量是靠声子的碰撞实现的. 绝对零度时, 声子消失, 格波间不再交换能量.20. 温度很低

29、时, 声子的自由程很大, 当 时, , 问 时, 对于无限长的晶体, 是否成为热超导材料?对于电绝缘体, 热传导的载流子是声子. 当 时, 声子数n . 因此, 时, 不论晶体是长还是短, 都自动成为热绝缘材料.21. 石英晶体的热膨胀系数很小, 问它的格林爱森常数有何特点? 由本教科书(3.158)式可知, 热膨胀系数 与格林爱森常数 成正比. 石英晶体的热膨胀系数很小, 它的格林爱森常数也很小. 格林爱森常数 大小可作为晶格非简谐效应大小的尺度. 石英晶体的格林爱森常数很小, 说明它的非简谐效应很小.移偶极矩, 即产生了自发极化, 产生了一个稳定的极化电场.1.设晶体只有弗仑克尔缺陷, 填

30、隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异? 正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2

31、.热膨胀引起的晶体尺寸的相对变化量 与X射线衍射测定的晶格常数相对变化量 存在差异, 是何原因? 肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X射线衍射测定的晶格常数相对变化量 , 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量 不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式 .3.KCl晶体生长时,在KCl溶液中加入适量的CaCl2

32、溶液,生长的KCl晶体的质量密度比理论值小,是何原因? 由于 离子的半径(0.99 )比 离子的半径(1.33 )小得不是太多, 所以 离子难以进入KCl晶体的间隙位置, 而只能取代 占据 离子的位置. 但 比 高一价, 为了保持电中性(最小能量的约束), 占据 离子的一个 将引起相邻的一个 变成空位. 也就是说, 加入的CaCl2越多, 空位就越多. 又因为 的原子量(40.08)与 的原子量(39.102)相近, 所以在KCl溶液中加入适量的CaCl2溶液引起 空位, 将导致KCl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低? 形成一个肖特

33、基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子

34、与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬? 我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中

35、产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点? 在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数. 滑移面一定是密积面,

36、因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, 111是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为111和(001). 8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗? 由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率 . 设正离子空位附近的离子和填隙离子的振动频率分别为 和 , 正离子空位附近的离子和填隙离子跳过的势垒高度分别为 和 , 负离子空位附近的离子和填隙

37、离子的振动频率分别为 和 , 负离子空位附近的离子和填隙离子跳过的势垒高度分别 为 , 则由(4.47)矢可得,.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即 , . 由问题1.已知, 所以有 , . 另外, 由于 和 的离子半径不同, 质量不同, 所以一般 , .也就是说, 一般 . 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同. 9.晶体结构对缺陷扩散有何影响? 扩散是自然界中普遍存在的现象, 它的本质是离子作无规

38、则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么? 填隙原子机构的自扩散系数,空位机构自扩散系数.自扩散系数主要决定于指数因子, 由问题4.和8.已知, , 1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉? 对于借助于空位进行扩散的正常晶格上的原子,

39、 只有它相邻的一个原子成为空位时, 它才扩散一步, 所需等待的时间是 . 但它相邻的一个原子成为空位的几率是 , 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间.13.自扩散系数的大小与哪些因素有关? 填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成.可以看出, 自扩散系数与原子的振动频率 , 晶体结构(晶格常数 ), 激活能( )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? 占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率

40、大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度. 15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? 正常晶格位置上的一个原子等待了时间 后变成填隙原子, 又平均花费时间后被空位复合重新进入正常晶格位置, 其中 是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间.因为 ,所以填隙原子自扩散系数近似反比于 . 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间 , 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? 目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17. 离子晶体的导电机构有几种? 离子晶体导电是离子晶体中的热缺

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号