高考数学100个提醒——知识、方法与例题2(文).doc

上传人:文库蛋蛋多 文档编号:4239075 上传时间:2023-04-10 格式:DOC 页数:12 大小:1.33MB
返回 下载 相关 举报
高考数学100个提醒——知识、方法与例题2(文).doc_第1页
第1页 / 共12页
高考数学100个提醒——知识、方法与例题2(文).doc_第2页
第2页 / 共12页
高考数学100个提醒——知识、方法与例题2(文).doc_第3页
第3页 / 共12页
高考数学100个提醒——知识、方法与例题2(文).doc_第4页
第4页 / 共12页
高考数学100个提醒——知识、方法与例题2(文).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《高考数学100个提醒——知识、方法与例题2(文).doc》由会员分享,可在线阅读,更多相关《高考数学100个提醒——知识、方法与例题2(文).doc(12页珍藏版)》请在三一办公上搜索。

1、八、解几70.倾斜角0,=900斜率不存在;斜率k=tan=如直线的倾斜角的范围是_(答:); 71.直线方程:点斜式 y-y1=k(x-x1);斜截式y=kx+b; 一般式:Ax+By+C=0两点式:;截距式:(a0;b0);求直线方程时要防止由于零截距和无斜率造成丢解,直线Ax+By+C=0的方向向量为=(A,-B)如经过点(2,1)且方向向量为=(1,)的直线的点斜式方程是_(答:);72.两直线平行和垂直若斜率存在l1:y=k1x+b1,l2:y=k2x+b2则l1l2k1k2,b1b2;l1l2k1k2=-1若l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1l2

2、A1A2+B1B2=0;若A1、A2、B1、B2都不为零l1l2;l1l2则化为同x、y系数后距离d=如(1)设直线和,当_时;当_时;当_时与相交;当_时与重合(答:1;3);(2)已知直线的方程为,则与平行,且过点(1,3)的直线方程是_(答:);(3)两条直线与相交于第一象限,则实数的取值范围是_(答:);(4)设分别是ABC中A、B、C所对边的边长,则直线与的位置关系是_(答:垂直);73.l1到l2的角tan=;夹角tan=|;点线距d=;如已知点M是直线与轴的交点,把直线绕点M逆时针方向旋转45,得到的直线方程是_(答:)74.圆:标准方程(xa)2+(yb)2=r2;一般方程:x

3、2+y2+Dx+Ey+F=0(D2+E2-4F0)参数方程:;直径式方程(x-x1)(x-x2)+(y-y1)(y-y2)=0 如(1)圆C与圆关于直线对称,则圆C的方程为_(答:);(2)圆心在直线上,且与两坐标轴均相切的圆的标准方程是_(答:或);(3)已知是圆(为参数,上的点,则圆的普通方程为_,P点对应的值为_,过P点的圆的切线方程是_(答:;);75.若(x0-a)2+(y0-b)2r2),则 P(x0,y0)在圆(x-a)2+(y-b)2=r2内(上、外) 如点P(5a+1,12a)在圆(x)y2=1的内部,则a的取值范围是_(答:)76.直线与圆关系,常化为线心距与半径关系,如:

4、用垂径定理,构造Rt解决弦长问题,又:r相离;d=r相切;dr+R两圆相离;dr+R两圆相外切;|Rr|dr+R两圆相交;d|Rr|两圆相内切;d0,b0)中,离心率e,2,则两条渐近线夹角的取值范围是_(答:); (3)抛物线(以为例):范围:;焦点:一个焦点,其中的几何意义是:焦点到准线的距离;对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);准线:一条准线; 离心率:,抛物线。如设,则抛物线的焦点坐标为_(答:);81、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内82直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双

5、曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_(答:(-,-1));(2)直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+);(3)过双曲线的右焦点直线交双曲线于A、B两点,若AB4,则这样的直线有_条(答:3);(2)相切:直线与椭圆相切;

6、直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线1外一点的直线与双曲线只有一个公共点的情况如下:P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P在两

7、条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点作直线与抛物线只有一个公共点,这样的直线有_(答:2);(2)过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_(答:); 82、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_(答:);(2)已知抛物线方程为

8、,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于_;若该抛物线上的点到焦点的距离是4,则点的坐标为_(答:);(3)点P在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标为_(答:);(4)抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为_(答:2);(5)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_(答:);83、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而

9、是将焦点弦转化为两条焦半径之和后,利用第二定义求解。如(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_(答:8);(2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ABC重心的横坐标为_(答:3);84、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直

10、线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); 特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!85你了解下列结论吗?(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_(答:)(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物

11、线的通径为,焦准距为; (5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为AB,则;(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点86动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:直接法:直接利用条件建立之间的关系;如已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程(答:或);待定系数法:已知所求曲线的类型,求曲线方程先根据条件设出所求曲线的方程,再由条件确定其待定系数。如线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、

12、B三点作抛物线,则此抛物线方程为(答:);定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1)由动点P向圆作两条切线PA、PB,切点分别为A、B,APB=600,则动点P的轨迹方程为(答:);(2)点M与点F(4,0)的距离比它到直线的距离小于1,则点M的轨迹方程是_ (答:);(3) 一动圆与两圆M:和N:都外切,则动圆圆心的轨迹为(答:双曲线的一支);代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程;如动点P是抛物线上任一点,定点为,点M分所成的比为2,则M的轨迹方程为_(答:

13、);参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。如(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MNAB,垂足为N,在OM上取点,使,求点的轨迹。(答:);(2)若点在圆上运动,则点的轨迹方程是_(答:);(3)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是_(答:);注意:如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。如已知椭圆的左、右焦点分别是F1(

14、c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(1)设为点P的横坐标,证明;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使F1MF2的面积S=若存在,求F1MF2的正切值;若不存在,请说明理由. (答:(1)略;(2);(3)当时不存在;当时存在,此时F1MF22)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份对称性、利用到角公式)、“方程与函数性质”

15、化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.87、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知与的中点三点共线;(5) 给出以下情形之一:;存在实数;若存在实数,等于已知三点共线.(6) 给出,等于已知是的定比分点,为定比,即(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,(8)给出,等于已知是的平分线/(9

16、)在平行四边形中,给出,等于已知是菱形;(10) 在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16) 在中,给出,等于已知是中边的中线;九、排列、组合、二项式定理88、计数原理:分类相加(每类方法都能独立地完成这件

17、事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合如(1)将5封信投入3个邮筒,不同的投法共有 种(答:);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合和中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)的一边AB上有4个点,另一边AC上有5个点

18、,连同的顶点共10个点,以这些点为顶点,可以构成_个三角形(答:90);89、排列数公式:=n(n-1)(n-2)(n-m1)=(mn,m、nN*),0!=1; =n!; n.n!=(n+1)!-n!;90、组合数公式:=(mn),;91、主要解题方法:优先法:特殊元素优先或特殊位置优先。如:某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_种(答:300);.捆绑法如(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_(答:2880

19、);(2)某人射击枪,命中枪,枪命中中恰好有枪连在一起的情况的不同种数为_(答:20);插空法如(1)3人坐在一排八个座位上,若每人的左右两边都有空位,则不同的坐法种数有_种(答:24);(2)某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同的插法种数为_(答:42)。间接扣除法如在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(1,2),(2,1)可以确定三角形的个数为_(答:15)。隔板法如(1)10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36;15);(2)某运输公

20、司有7个车队,每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同的抽法有多少种?(答:84)先选后排,先分再排(注意等分分组问题) 如某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只测试,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时,被发现的不同情况种数是_(答:576)。92、二项式定理 特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn93、二项展开式通项: Tr+1= Cnranrbr ;作用:处理与指定项、特定项、常数项、有理项等有关问题。要注意区别二项式系数与项的系数;94、

21、二项式系数性质:对称性: 与首末两端等距的二项式系数相等.Cnm=Cnnm 中间项二项式系数最大:n为偶数,中间一项;若n为奇数,中间两项(哪项?)二项式系数和95、f(x)=(ax+b)n展开各项系数和为f(1);奇次项系数和为;偶次项系数和为;展开各项系数和,令可得.96、二项式定理应用:近似计算、整除问题、结合放缩法证明与指数有关的不等式、用赋值法求展开式的某些项的系数的和。十、概率与统计97、随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 98、等可能事件的概率(古典概率)::P(A)=如: 设10件产品中有4件次品,6件正品,求下列事件的概率:从中任取2件都是

22、次品;从中任取5件恰有2件次品;从中有放回地任取3件至少有2件次品;从中依次取5件恰有2件次品。(答:;) 互斥事件(不可能同时发生的):P(A+B)=P(A)+P(B); 如:有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:);对立事件(A、B不可能同时发生,但A、B中必然有一发生):P(A)+P()1;独立事件(事件A、B的发生互不影响):P(AB)P(A)P(B); 如(1)设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是_(答:)

23、;(2)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为_;这名同学至少得300分的概率为_(答:0.228;0.564);独立事件重复试验::Pn(K)=Cnkpk(1-p)n-k 为A在n次独立重复试验中恰发生k次的概率。如(1)袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是_(答:);(2)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种

24、或乙种饮料,取用甲种或乙种饮料的概率相等,则甲种饮料饮用完毕时乙种饮料还剩下3瓶的概率为_(答:)99、总体、个体、样本、样本容量;抽样方法:简单随机抽样(包括随机数表法,抽签法)分层抽样(用于个体有明显差异时). 共同点:每个个体被抽到的概率都相等。如:某中学有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一个容量为n的样本,已知每个学生被抽到的概率为0.2,则n= _(答:200);100、总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,即用样本平均数估计总体平均数(即总体期望值描述一个总体的平均水平)直方图的纵轴(小矩形的高)一般是频率除以组距的商(而不是频率),横轴一般是数据的大小,小矩形的面积表示频率样本平均数:样本方差:;(x12+x22+ x32+xn2n)方差和标准差用来衡量一组数据的波动大小,数据方差越大,说明这组数据的波动越大。提醒:若的平均数为,方差为,则的平均数为,方差为。如已知数据的平均数,方差,则数据的平均数和标准差分别为 A15,36 B22,6 C15,6 D22,36 (答:B)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号