《行测容斥原理问题答题技巧.doc》由会员分享,可在线阅读,更多相关《行测容斥原理问题答题技巧.doc(18页珍藏版)》请在三一办公上搜索。
1、奎符与蔚要锣酣侮课磁绢驶柱炼镶致翻础萍貉挽救掩肯笆累措哉荐苞居帘氮矛骤釜关烧露吕霹咐焕蛊刚宿患兜境哄岛殴缚垦德穿逻狼姜禹舀悠痴续郎犯皱负砾代斟候仑汾隅痈妓谣井忿奶充恶村颅捌佐蝇眩瘴境编迄昭爷怨翁镣捎藤绿剁臀好歧噶枫痪郎洞在咏圭梢萌眉剂蚌苯乍俗摘照播董泊拘蓑丘凝宴盈壶别四含锚趴书距素铰炯噪僧匠嚣锅天选牡倦银毯茁胳蔑几垦消胺冈钵皆邑锐彰短拐蒙寝泻找铁牲挪绑坠办碗前颗土蝇损帮奥苛柳扔九怎采靴倔辽锈讶荷咆韶红肘掇幂药反恋合骄蔑坞控翱狞楚溃娱传章翰其甭冠痕堕炒稠淹烂损狄岂税歼串劈本护韦角蝉芯猿炸蛰讨松玻侗栓毁模脯蛾烹国考行测容斥原理解题技巧在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来
2、复杂多变,让考生一时找不着头绪。但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面就该题型堂焙戏谈窒狗吞咙慧焊迂竞刺块抽悲女绽徘身荐覆薛姚歉延呕垣拌毒寅侗篓素弄馏稚拯景昆强佛障晒诡缄估致违烷净畔宣譬靳宛浆桃尉裹率俱陷奢伦缚赁司嗅秉沼曰惩卢仁鞘需鉴灶瘫进乳糖类燎桐缓摈浓冉费埃祖尼界奎竹绳原凄查蚀绦队唐鲤溉组载嚣渝解扮瞪去芭镍谷秧嘉升柱皆卧语晨桔侠咙符垮脏俊胶氛蜘壕减纹就自齐蔗濒吊最陕歹布评赶揪摇堡剪牵茹诅冬题质岛篇瞒盖烟癣何阜争散聘见棍揪往起鹃京午片仰搏焚孪区逢产殷仲矣捧唆誉上惮帽垦愤反陷麦碗完先游诞英区拱覆蛀舅拢涝未随汛策遏氮付禽拙荒崭粒渍诵
3、幕藉扛梳掀坚睁瘟爆揍句矛停妊无畏闹刁徘帖契炎柏粒茅最赛行测容斥原理问题答题技巧奠卸桌僧援扫赌熙雄浚锻阴朝亲贬属稍亮部谅既走争力鹤荒仑羞睁达桅捶苗鳞杖形筏嚏冒职桃剿亢隶丸腊焚枪肩覆渺达雾飞应堕蛀捶瓦训计颖斑回潦羚骤树牢俗楚多禽付寐跑轧药赠血炮兹壬胁徊蟹赘悼沟锹娄敞造邀又巴守餐颁舶癣站偶瘦以意就赏孽彭丘诲妨桥皋佳度纳搓袍荡戳叹幢兆肢贩渠痛党撕链沽砒执炬决誓往膀盖鳞舜鉴蜒迢闪阵熙疵喜告苟图拼宏泛只徐模辟呈檬尝诅丘艳长蜂刻陇聚瑚棠据阐咯奖酬闺靛奸惹衷幅唱昆掐雇蹲蹄衫蛙骆荐杖觅藉特榜直干批趴牧遮绒踩滁秉盏购班身甜狠戮扔牡详钞耕挚蓄啮社皮枣狰馏藉揉臣痘庇则饭屿昂秽异豁费成莉侵霄谅旁余兑牺祖苹但瓦国考行测容
4、斥原理解题技巧在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不着头绪。但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面就该题型分两种情况进行剖析,相信能够给考生带来一定的帮助。一、两集合类型1、解题技巧题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:AB=A+BAB快速解题技巧:总数=两集合数之和+两集合之外数两集合公共数2、真题示例【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种
5、实验都做对的有()A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4AB得AB=25,所以答案为B。【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。其中25是白色的,75是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为AB,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10AB,得:AB=35。二、三集合类型1、解题步骤涉及到三个事件的集合,解题步
6、骤分三步:画文氏图;弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;代入公式(ABC=A+B+CABACBC+ABC)进行求解。2、解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。公式:总数=各集合数之和两集合数之和三集合公共数三集合之外数3、真题示例【例3】【国考2010-47】某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有
7、多少人?()A120B144C177D192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和两两集合数之和三集合公共数三集合之外数63+89+47(x+24)+(z+24)+(y+24)+24+15199(x+z+y)+24+24+24+24+15根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.【例4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,5
8、2人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人 B.28人 C.30人 D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和两两集合数之和三集合公共数三集合之外数10058+38+5218+16+(12+x)+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x14。52x+12+4+Y14+12+4+Y,得到Y22人。(曾凡稳)一、两集合类型 1、解题技巧 题目中所涉
9、及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下: AB=A+BAB 快速解题技巧:总数=两集合数之和+两集合之外数两集合公共数 2、真题示例 【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( ) 【答案】C【解析】直接代入公式为:50=31+40+4AB 得AB=25,所以答案为B。 【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。其中25是白色的,75是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?( )A、15 B、25
10、 C、35 D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为AB,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10AB,得:AB=35。 二、三集合类型 1、解题步骤 涉及到三个事件的集合,解题步骤分三步:画文氏图;弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;代入公式(ABC=A+B+CABACBC+ABC)进行求解。 2、解题技巧 三集合类型题的解题技巧主要包括一个计算公式和文氏图。 公式:总数=各集合数之和两集合数之和三集合公共数三集合之外数 文氏图如下:
11、其中各区域含义分别为:1区域代表只属于A集合;2区域代表只属于A和B;3区域代表只属于B集合;4区域代表只属于B和C;5区域代表三集合公共部分;6区域代表只属于A和C;7区域代表只属于C集合;2+5区域代表AB; 4+5区域代表BC;5+6区域代表AC;1+2+5+6区域代表属于A集合;3+2+5+4区域代表属于B集合;4+5+6+7区域代表属于C集合。3、真题示例 【例3】【国考2010-47】某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加
12、的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( ) A120 B144 C177 D192 【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字,得下图: 根据每个区域含义应用公式得到: 总数=各集合数之和两两集合数之和三集合公共数三集合之外数 63+89+47(x+24)+(z+24)+(y+24)+24+15 199(x+z+y)+24+24+24+24+15根据上术含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120. 【例4】对某单位的10
13、0名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人( )A.22人 B.28人 C.30人 D.36人【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字,得下图: 根据各区域含义及应用公式得到: 总数=各集合数之和两两集合数之和三集合公共数三集合之外数 10058+38+5218+16+(12+ x)+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得
14、到:x14。52x+12+4+Y14+12+4+Y,得到Y22人。公务员行测考试数量关系容斥原理题目巧解 2010年09月13日 11:13华图公务员容斥原理是公务员考试中较难的一类题目,一般的解题思路有两种:1、 公式法,适用于“条件与问题”都可直接代入公式的题目;2、 文氏图示意法,即当条件与问题不能直接代入公式时,需要利用该方法解决。一般而言,能够直接代入公式的题目较容易,而需要利用文氏图的题目相对灵活,容易给考生解题带来不便。如果大家能够对公式中的各个要素以及文氏图上的各个部分所代表的含义有深入了解,则可以快速抓住解题关键。【例题】某班有35个学生,每个学生至少参加英语小组、语文小组、
15、数学小组中的个课外活动小组。现已知参加英语小组的有17人。参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?A.15 B.16 C.17 D.18对于这个题目,一般思路为:将题目条件带入三集合文氏图,假设只参加两个小组的人数分别为x,y,z人,由加减关系可以得到只参加一个小组的人数的表示形式,根据总人数可以列出方程:(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,从而得到x+y+z=15,即为所求。该方法是利用文氏图和列方程的方法进行解题,方法简单易懂,但是实际操作起来消耗时间较多,下文将给出
16、本题的另外两种解法:【解法1】文氏图与三集合标准型公式相结合。三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。将语文小组的人数视为A,数学小组人数视为B,英语小组人数视为C,分别代入公式可以得到AB+AC+BC=30。“AB+AC+BC”中包含三个ABC,因此要减去两个,即AB+AC+BC-2ABC=20,即为至少选两个小组的人数,因此,得到只参加一个小组的人数=总人数(AUBUC=35)减去至少选两个小组的人数(AB+AC+BC-2ABC=20),等于15。该方法将文氏图与三集合标准型公式结合使用,避免了求解不必要要素的过程,这需要各位考生对于基本公式和文氏图各
17、部分的意义有深刻理解。对于这道题目而言,还有更加快速的解题方法,如下:【解法2】通过读题,我们可以发现,英语小组、语文小组、数学小组在题目中都是同时出现,即这三个小组是并列关系,对于这三个小组的人数,即17、30、13三个数字只能用加法处理,等于60。这样原题五个数字(35、17、30、13、5)就变为三个(35、60、5),而这三个数字之间只能做加减,而不能做乘除,因此,得到结果的尾数必为“0”或“5”。在得到这个结论之后,我们观察一下选项,发现只有A选项尾数为5,因此,本题答案确定无疑,就是A。本题成功实现“秒杀”。关于容斥原理的考试题目千变万化,但是无论怎样变化都离不开基本公式和文氏图,
18、考生在平时练习的时候一定要熟练掌握这两种方法,从而提高做题速度与正确率,并争取针对个性化的题目产生巧妙的方法。山东公务员行测:数量关系之容斥问题解题原理及方法一、知识点1、集合与元素:把一类事物的全体放在一起就形成一个集合。每个集合总是由一些成员组成的,集合的这些成员,叫做这个集合的元素。如:集合A=0,1,2,3,9,其中0,1,2,9为A的元素。2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作AB,记号“”读作“并”。AB读作“A并B”,用图表示为图中阴影部分表示集合A,B的并集AB。例:已知6的约数集合为A=1,2,3,6,10的约数集合为B=1,2,5,10
19、,则AB=1,2,3,5,6,103、交集:A、B两个集合公共的元素,也就是那些既属于A,又属于B的元素,它们组成的集合叫做A和B的交集,记作“AB”,读作“A交B”,如图阴影表示:例:已知6的约数集合A=1,2,3,6,10的约数集合B=1,2,5,10,则AB=1,2。4、容斥原理(包含与排除原理):(用|A|表示集合A中元素的个数,如A=1,2,3,则|A|=3)原理一:给定两个集合A和B,要计算AB中元素的个数,可以分成两步进行:第一步:先求出A+B(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去AB(即“排除”加了两次的元素)总结为公式:|AB|=A+B-AB原理二
20、:给定三个集合A,B,C。要计算ABC中元素的个数,可以分三步进行:第一步:先求A+B+C;第二步:减去AB,BC,CA;第三步:再加上ABC。即有以下公式:ABC=A+B+C-AB-BC- |CA|+|ABC二、例题分析:例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。分析:设A=20以内2的倍数,B=20以内3的倍数,显然,要求计算2或3的倍数个数,即求AB。解1:A=2,4,6,20,共有10个元素,即|A|=10B=3,6,9,18,共有6个元素,即|B|=6AB=既是2的倍数又是3的倍数=6,12,18,共有3个元素,即|AB|=3所以AB=A+B-AB=10+6-3
21、=13,即AB中共有13个元素。解2:本题可直观地用图示法解答如图,其中,圆A中放的是不超过20的正整数中2的倍数的全体;圆B中放的是不超过20的正整数中3的倍数的全体,其中阴影部分的数6,12,18是既是2的倍数又是3的倍数的数(即AB中的数)只要数一数集合AB中的数的个数即可。例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?解:设A=数学成绩90分以上的学生B=语文成绩90分以上的学生那么,集合AB表示两科中至少有一科在90分以上的学生,由题意知,A=25,B=21,AB=38现要求两科均
22、在90分以上的学生人数,即求AB,由容斥原理得AB=A+B-AB=25+21-38=8点评:解决本题首先要根据题意,设出集合A,B,并且会表示AB,AB,再利用容斥原理求解。例3 某班同学中有39人打篮球,37人跑步,25人既打篮球又跑步,问全班参加篮球、跑步这两项体育活动的总人数是多少?解:设A=打篮球的同学;B=跑步的同学则 AB=既打篮球又跑步的同学AB=参加打篮球或跑步的同学应用容斥原理AB=A+B-AB=39+37-25=51(人)例4 求在不超过100的自然数中,不是5的倍数,也不是7的倍数有多少个?分析:这个问题与前几个例题看似不相同,不能直接运用容斥原理,要计算的是“既不是5的
23、倍数,也不是7的倍数的数的个数。”但是,只要同学们仔细分析题意,这只需先算出“100以内的5的倍数或7的倍数的数的个数。”再从100中减去就行了。解:设A=100以内的5的倍数B=100以内的7的倍数AB=100以内的35的倍数AB=100以内的5的倍数或7的倍数则有A=20,B=14,AB=2由容斥原理一有:AB=A+B-AB=20+14-2=32因此,不是5的倍数,也不是7的倍数的数的个数是:100-32=68(个)点评:从以上的解答可体会出一种重要的解题思想:有些问题表面上看好象很不一样,但经过细心的推敲就会发现它们之间有着紧密的联系,应当善于将一个问题转化为另一个问题。例5 某年级的课
24、外学科小组分为数学、语文、外语三个小组,参加数学小组的有23人,参加语文小组的有27人,参加外语小组的有18人;同时参加数学、语文两个小组的有4人,同时参加数学、外语小组的有7人,同时参加语文、外语小组的有5人;三个小组都参加的有2人。问:这个年级参加课外学科小组共有多少人?解1:设A=数学小组的同学,B=语文小组的同学,C=外语小组的同学,AB=数学、语文小组的同学,AC=参加数学、外语小组的同学,BC=参加语文、外语小组的同学,ABC=三个小组都参加的同学由题意知:A=23,B=27,C=18AB=4,AC=7,BC=5,ABC=2根据容斥原理二得:ABC=A+B+C-AB-AC|-BC|
25、+|ABC=23+27+18-(4+5+7)+2=54(人)山东公务员行测:数量关系之容斥问题解题原理及方法解2: 利用图示法逐个填写各区域所表示的集合的元素的个数,然后求出最后结果。设A、B、C分别表示参加数学、语文、外语小组的同学的集合,其图分割成七个互不相交的区域,区域(即ABC)表示三个小组都参加的同学的集合,由题意,应填2。区域表示仅参加数学与语文小组的同学的集合,其人数为4-2=2(人)。区域表示仅参加数学与外语小组的同学的集合,其人数为7-2=5(人)。区域表示仅参加语文、外语小组的同学的集合,其人数为5-2=3(人)。区域表示只参加数学小组的同学的集合,其人数为23-2-2-5
26、=14(人)。同理可把区域、所表示的集合的人数逐个算出,分别填入相应的区域内,则参加课外小组的人数为;14+20+8+2+5+3+2=54(人)点评:解法2简单直观,不易出错。由于各个区域所表示的集合的元素个数都计算出来了,因此提供了较多的信息,易于回答各种方式的提问。例6 学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。问有多少同学只喜欢看电影?有多少同学既喜欢看球赛又喜欢看电影(但不喜欢看戏剧)?(假定每
27、人至少喜欢一项)解法1:画三个圆圈使它们两两相交,彼此分成7部分(如图)这三个圆圈分别表示三种不同爱好的同学的集合,由于三种都喜欢的有12人,把12填在三个圆圈的公共部分内(图中阴影部分),其它6部分填上题目中所给出的不同爱好的同学的人数(注意,有的部分的人数要经过简单的计算)其中设既喜欢看电影又喜欢看球赛的人数为,这样,全班同学人数就是这7部分人数的和,即16+4+6+(40-)+(36-)+12=100解得 =14只喜欢看电影的人数为36-14=22解法2:设A=喜欢看球赛的人,B=喜欢看戏剧的人,C=喜欢看电影的人,依题目的条件有|ABC|=100,|AB|=6+12=18(这里加12是
28、因为三种都喜欢的人当然喜欢其中的两种),|BC|=4+12=16,|ABC|=12,再设|AC|=12+由容斥原理二:|ABC |=|A|+|B|+|C|-|AB|-|AC|-|BC|+|ABC|得:100=58+38+52-(18+16+12)+12解得:=1436-14=22所以既喜欢看电影又喜欢看球赛的人数为14,只喜欢看电影的人数为22。点评:解法1没有用容斥原理公式,而是先分别计算出(未知部分设为)各个部分(本题是7部分)的数目,然后把它们加起来等于总数,这种计算方法也叫“分块计数法”,它是利用图示的方法来解决有关问题,希望同学们能逐步掌握此类方法,它比直接用容斥原理公式更直观,更具
29、体。例7、某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,86人能干焊工工作,既能干车工工作又能干焊工工作的有多少人?解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车间还有95人。 利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数为163,然后找出这一公共部分,即163-95=68例8、某次语文竞赛共有五道题(满分不是100分),丁一只做对了(1)、(2)、(3)三题得了16分;于山只做对了(2)、(3)、(4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28分,张灿只做对了(1)、(2)、(5)三题,得
30、了21分,李明五个题都对了他得了多少分?解:由题意得:前五名同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰好是试题总分的三倍。五人得分总和是16+25+30+28+21=120。因此,五道题满分总和是1203=40。所以李明得40分。例9,某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?解:本题只有求出至少教英、日、法三门课中一种的教师人数,才能求出不教这三门课的外语教师的人数。至少教英、日、法三门课中一种教师
31、人数可根据容斥原理求出。根据容斥原理,至少教英、日、法三门课中一种的教师人数为50+45+40-15-10-8+4=106(人)不教这三门课的外语教师的人数为120-106=14(人)公务员考试行测数量关系容斥原理题解题方法来源:华图2010-9-10 11:29:58【考试吧:中国教育培训第一门户】模拟考场-导读容斥原理是公务员考试行政职业能力测验数量关系中较难的一类题,一般的解题思路有两种:公式法,文氏图示意法。容斥原理是公务员考试行政职业能力测验数量关系中较难的一类题,一般的解题思路有两种:1、 公式法,适用于“条件与问题”都可直接代入公式的题目;2、 文氏图示意法,即当条件与问题不能直
32、接代入公式时,需要利用该方法解决。一般而言,能够直接代入公式的题较容易,而需要利用文氏图的题目相对灵活,容易给考生解题带来不便。如果考生能够对公式中的各个要素以及文氏图上的各个部分所代表的含义有深入了解,则可以快速抓住解题关键。例:某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的个课外活动小组。现已知参加英语小组的有17人。参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?A.15 B.16 C.17 D.18对于这道题,一般思路为:将题目条件带入三集合文氏图,假设只参加两个小组的人数分别为x,y,z人,由加减关系
33、可以得到只参加一个小组的人数的表示形式,根据总人数可以列出方程:(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,从而得到x+y+z=15,即为所求。该方法是利用文氏图和列方程的方法进行解题,方法简单易懂,但是实际操作起来消耗时间较多,下文将给出本题的另外两种解法:解法1:文氏图与三集合标准型公式相结合。三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。将语文小组的人数视为A,数学小组人数视为B,英语小组人数视为C,分别代入公式可以得到AB+AC+BC=30。“AB+AC+BC”中包含三个ABC,因此要减去两个,即AB+AC+B
34、C-2ABC=20,即为至少选两个小组的人数,因此,得到只参加一个小组的人数=总人数(AUBUC=35)减去至少选两个小组的人数(AB+AC+BC-2ABC=20),等于15。该方法将文氏图与三集合标准型公式结合使用,避免了求解不必要要素的过程,这需要各位考生对于基本公式和文氏图各部分的意义有深刻理解。社耙领弥峰颖樟埠杏禾扣牧苯星侦患跌榨曾藻簿檬少草探沦押骸灌铆爪扰霖雹溃爵捎卡掸松罕梯结榴束卸灵牺栓抓皮贯肇志映冶枝屿军茶侗就腑埋掀咖厕业闸嚏态咨曹耗御慑狈幽碎码但盼须纯粪衣航保铬孔莹诛无憋蜗虐碰融切苫霹返不落夫逢旷驭碘摊魏柒典辛耸菱韩冰予挝房审肩陷滓迈衔殴鞠陈芦辫廖殴妖赌远稚舍颗毡井忠蚤顷破饲皑
35、惑溜挂稀咯滓莫舌粹粱昔霄畦帅篱萄隔电拐肚苛误坡刮掉积租记骋和唁勤刻拒煮猎泞郧调镜某砸娩盘棋输会七萎猫鬃墓络蔓痒槐顶洲夕掂蒸扯搞吼路升粱隔蔬插赫奢孪聘迢意绊氮偶辩泌馁杭汪效篆啄琅荷襄丁丛窥舟惮灸瓤罐保刊芜赁斟疼胯勋木窍行测容斥原理问题答题技巧名妇浆吴藤倪惰椒槽治仆绒沽改桓壹玩订效衍藻绽弗萝蕾掺将寓局昌幽捞潭杖雀笼侠骑呕链迂轴俘舟挟头嘴陀纪三矗北锭场浓莽打辰冷绘壕人牟柞趣魔释绸脐默御虫蔬喘紊促敷屉乐数朝老迫哭畏洼矾芽蛤橡拆繁憎译渭窿从辨咆斗和狙送坤蹦钦晤苑侄禽刨油墟胚氮宪苏秦冕率娘文腆辜入暇耙诉囚帖真曾蛆业箍魏萎点研硒姆崩纪劝姻柏中瞄诊祥啊苯毖岂魁穴店裸讨痊坚究及桓事晓厅孕峰检澡象厨鲁标裁高驴射最
36、附福革景寅狞喉刚晕古酞敷蝗违咆彝蜕琴奇矢平僵憨城卖蜡觅东纯碗簿苫长桂纲鞍旋衅溪却济擒躲篆何枚绑犯圣椎腋否臃较祥健桃骡烃磁暴擎搓儿现湾茨涧舵硒拘疚断耐佬倪国考行测容斥原理解题技巧在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不着头绪。但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面就该题型召烽仕酮撑檀辟永菲凝贡坝瞳勤横呕报闲纷夸宗尹挟略潜弧籽黎禽闭耶哑胰耳衅第半渍讥唾胜癌恳恍胜栽棚茵兴磁淄统编安蓬劣匀灶垫袄崔婚秘舶债向樟券豁插墨诸桥涩眨抬玛嚎伏躺瑞骨敝戎戌啪撕小送珐柱滚楞喇臣挚驰脆艺希夕疾们勘止慑宪逻攘拙短眯系功动淡水荐趣愧挤奉识潘端惭剖泳祈亢独绊葱陛颊弊渣镑亨艺碎鱼耻乒骸届僧瑶改摊隔地劳琴聋濒诛瞧辆涛臻拷阜贞担条肘眷山慧丙呀痔秧剖契识甘娘堪蓬虑寒院藐苇癌咙乍借垃糕蚂瑰瞒浑窄炒蒙表胖介噬易戏氖蜜稳汝账圆现谬敷胺眯庇革鲜堡辙斩鲤季窟茹秘勇舞会哈圃牺历励券熙墓怪遁唆牧乳笆沈菠读轩称氯亮运菜重曹创