《闭区间上连续函数的性质(74).ppt》由会员分享,可在线阅读,更多相关《闭区间上连续函数的性质(74).ppt(15页珍藏版)》请在三一办公上搜索。
1、闭区间上连续函数的性质,闭区间上的连续函数有着十分优良的性质,这些性质在函数的理论分析、研究中有着重大的价值,起着十分重要的作用。下面我们就不加证明地给出这些结论,好在这些结论在几何意义是比较明显的。,一、最大值和最小值定理,定义:,例如,定理1(最大值和最小值定理)在闭区间上连续的函数一定有最大值和最小值.,注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.,定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界.,证,二、介值定理,定义:,几何解释:,证,由零点定理,几何解释:,例1,证,由零点定理,推论 在闭区间上连续的函数必取得介于最大值 与最小值 之
2、间的任何值.,例2,证,由零点定理,例3,证,由零点定理知,总之,注,方程f(x)=0的根,函数f(x)的零点,有关闭区间上连续函数命题的证明方法,10直接法:先利用最值定理,再利用介值定理,20间接法(辅助函数法):先作辅助函数,再利用零点定理,辅助函数的作法,(1)将结论中的(或x0或c)改写成x,(2)移项使右边为0,令左边的式子为F(x)则F(x)即为所求,区间一般在题设中或要证明的结论中已经给出,余下只须验证F(x)在所讨论的区间上连续,再比较一下两个端点处的函数值的符号,或指出要证的值介于F(x)在所论闭区间上的最大值与最小值之间。,三、小结,四个定理,有界性定理;最值定理;介值定理;根的存在性定理.,注意1闭区间;2连续函数这两点不满足上述定理不一定成立,解题思路,1.直接法:先利用最值定理,再利用介值定理;,2.辅助函数法:先作辅助函数F(x),再利用零点定理;,思考题,下述命题是否正确?,思考题解答,不正确.,例函数,