理论力学B-第九章质点动力学.ppt

上传人:小飞机 文档编号:6000897 上传时间:2023-09-13 格式:PPT 页数:41 大小:974KB
返回 下载 相关 举报
理论力学B-第九章质点动力学.ppt_第1页
第1页 / 共41页
理论力学B-第九章质点动力学.ppt_第2页
第2页 / 共41页
理论力学B-第九章质点动力学.ppt_第3页
第3页 / 共41页
理论力学B-第九章质点动力学.ppt_第4页
第4页 / 共41页
理论力学B-第九章质点动力学.ppt_第5页
第5页 / 共41页
点击查看更多>>
资源描述

《理论力学B-第九章质点动力学.ppt》由会员分享,可在线阅读,更多相关《理论力学B-第九章质点动力学.ppt(41页珍藏版)》请在三一办公上搜索。

1、动 力 学,研究受力物体的运动与作用力之间的关系,动力学,质点动力学的基本方程动量定理动量矩定理动能定理,第九章 质点动力学的基本方程,几个基本概念动力学的基本定律质点的运动微分方程质点动力学问题的应用举例,几个基本概念,动力学 包含:质点动力学 和质点系动力学质点具有一定质量而几何形状与尺寸大小可以忽略不计的物体质点系由两个(以上)相互联系的质点所组成的系统刚体(静力学中已有定义)不变的质点系;任意两个质点间的距离始终保持不变的质点系(质点系的特殊情形),牛顿三定律(物理学的已有基础):第一定律(惯性定律)第二定律(力与加速度之间的关系的定律)第三定律(作用与反作用定律),9-1 动力学的基

2、本定律,牛顿第一定律,牛顿第一定律(惯性定律):不受力作用的质点,将保持静止或作匀速直线运动。惯性质点保持其速度大小、方向不变的性质,静止是其特殊情况。惯性的大小用质点的质量来度量。匀速直线运动也称为惯性运动,第一定律给出了物体作惯性运动的条件。注意:(相对论)惯性的度量与速度有关,工程上(远小于光速)可以忽略速度对惯性度量的影响。,牛顿第二定律,牛顿第二定律:质点的动量对时间的一阶导数等于作用在质点上的力,当质点的质量为常量(经典力学)时:,式中 为(汇交力系的合)力,为质量(质点惯性的度量),质点的质量与质点加速度的乘积等于作用在质点上的力,(地球表面)的重力与重力加速度,地球表面的重力P

3、与重力加速度 g:,或者:,g=9.80665m/s21N=1kg1m/s21dyn=1g 1cm/s21N=105dyn,牛顿第三定律,牛顿第三定律:两个物体间的作用力与反作用力等值、反向、共线,且同时分别作用在这两个物体之上。(静力学公理四),牛顿第三定律提供了从质点动力学 到质点系动力学 的桥梁,惯性参考系牛顿三定律适用的参考系经典力学以牛顿三定律为基础的力学,惯性参考系:,牛顿定律的结论只有在惯性参考系才是正确的。,以太阳为原点,三个坐标轴指向三个恒星的日心参考系是惯性参考系。(研究天体的运动、地心的运动等),以地心为原点,三个坐标轴指向三个恒星的地心参考系是惯性参考系。(人造卫星的轨

4、道、洲际导弹的弹道等),一般的工程问题,把固定于地面的坐标系或相对于地面作匀速直线平移的坐标系为惯性坐标系,9-2 质点的运动微分方程,矢量形式直角坐标形式自然轴系形式,一、矢量形式,设可以自由运动的质点M,其质量为m,作用力的合力为F,加速度为a,则,这是 质点运动微分方程的矢量形式,二、直角坐标形式,质点运动微分方程的矢量形式,把矢径r 和力F 在Oxyz轴上投影,这是 质点运动微分方程的直角坐标形式,二、自然形式(自然轴上投影),质点运动微分方程的矢量形式,把矢径 r 和力F 在Mtnb轴上投影,这是 质点运动微分方程的自然形式,质点动力学的两类基本问题:,第一类问题:已知运动,求力第二

5、类问题:已知力,求运动,第一类问题的求解:已知 r=r(t),对其求导,代入左边公式,即可求得力F,质点动力学的两类基本问题:,第二类问题的求解:是积分过程在求解第二类问题时,方程的积分中要出现积分常数,为了确定质点的运动,必须根据运动的初始条件定出这些积分常数。,第一类问题:已知运动,求力第二类问题:已知力,求运动,例9-1 曲柄连杆机构如图所示.曲柄OA以匀角速度 转动,OA=r,AB=l,当 比较小时,以O 为坐标原点,滑块B 的运动方程可近似写为,如滑块的质量为m,忽略摩擦及连杆AB的质量,试求当,连杆AB所受的力.,解:研究滑块,其中,有,得,这属于动力学第一类问题。,当,得,例2:

6、俯冲的飞机,讨论:当=0时,有,歼击机飞行时,载荷因数Fmax/P可达10,引起“黑晕”。,法向:,得到:,重P 的飞机沿铅垂平面俯冲的某瞬时速度v=const.航线曲率半径 已知,飞机轴线与水平面倾角为,求飞机的升力 F。,例9-2 质量为m的小球以水平速度v0 射入静水之中,如图所示。如水对小球的阻力F与小球速度v的方向相反,而大小成正比,即F=-v。为阻尼系数。忽略水对小球的浮力,试分析小球在重力和阻力作用下的运动。,解:(1)取小球为研究对象(2)受力分析:小球在任意位置M处,受力有重力mg和阻力 F=-vxi-vyj。,为求vx、vy,将上两式分离变量,得,(3)小球沿x、y轴的运动

7、微分方程为,积分:,由初始条件:t=0时,vx=v0,vy=0。代入上两式求得两个积分常数,可得,或,可得,再积分,得,由初始条件:t=0时,x=y=0。代入上两式,求得常数,4)质点的运动方程为,当t趋于无穷大时:,小球趋于等速铅垂下落下落速度 c=mg/,称为极限速度。小球的轨迹趋于一铅垂直线,例9-3:圆锥摆,某圆锥摆,小球在水平面内作匀速圆周运动,已知小球质量m=0.1kg,l=0.3m,=60,求小球速度v 与绳子张力F。,解:,法向:,副法向:,=2.1m/s,这是混合问题。,例4:刹车的作用,运动为圆周运动;按自然轴列方程:,对象为重物;作用力有P、T,向右运动过程中a 为负值(

8、减速)。当=0,v=vmax=v0,已知:吊车的吊重为P,匀速 v0,绳长为l,空气阻力不计。求:小车突然刹车后,绳子拉力T 的变化。,解:,例9-4:粉碎机滚筒半径为,绕通过中心的水平轴匀速转动,筒内铁球由筒壁上的凸棱带着上升。为了使小球获得粉碎矿石的能量,铁球应在时才掉下来。求滚筒每分钟的转数n。,解:取铁球为质点。铁球被旋转的滚筒带着沿圆弧向上运动,当铁球到达某一高度时,会脱离筒壁而沿抛物线下落。铁球在上升过程中,受到重力mg、筒壁的法向反力FN 和切向反力F 的作用。,列出质点的运动微分方程在主法线上的投影式,铁球在未离开筒壁前的速度,等于筒壁上与其重合点的速度。即,解得,当 时,铁球

9、将落下,这时,于是的滚筒转速,讨论,1、显然,越小,要求 n 越大。2、当 时,铁球就会紧贴筒壁转过最高点而不脱离筒壁下落,起不到粉碎矿石的作用。,例5:弹簧质量系统(1),弹簧质量系统,物块的质量为 m,弹簧的刚度系数为 k,物块在平衡位置的初始速度为 v0。,求:物块的运动方程,例5:弹簧质量系统(1),解:这是已知力(弹簧力)求运动规律,故为第二类动力学问题。,以弹簧未变形时的平衡位置为原点建立Ox坐标系,将物块置于任意位置 x 0 处。物块在 x 方向只受有弹簧力:Fk x。根据直角坐标系中的质点运动微分方程,例5:弹簧质量系统(1),例6:弹簧质量系统(2),弹簧质量系统,物块的质量为 m,弹簧的刚度系数为 k,物块自平衡位置的初始速度为 v0。,求:物块的运动方程,例6:弹簧质量系统(2),解:这是已知力(弹簧力)求运动规律,故为第二类动力学问题。,以弹簧在静载mg作用下变形后的平衡位置为原点建立Ox坐标系,将物块置于任意位置 x 0 处。,物块在 x 方向只受有弹簧力Fk(x+st)和重力Wmg。根据直角坐标系中的质点运动微分方程:,例6:弹簧质量系统(2),例6:弹簧质量系统(2),例6:弹簧质量系统(2),计算结果分析,重力mg只改变了系统的平衡位置,对运动规律并无影响。,作业:习题 9-5,9-8,9-18,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号