22.一元二次方程教案.doc

上传人:sccc 文档编号:4908774 上传时间:2023-05-22 格式:DOC 页数:20 大小:347.04KB
返回 下载 相关 举报
22.一元二次方程教案.doc_第1页
第1页 / 共20页
22.一元二次方程教案.doc_第2页
第2页 / 共20页
22.一元二次方程教案.doc_第3页
第3页 / 共20页
22.一元二次方程教案.doc_第4页
第4页 / 共20页
22.一元二次方程教案.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《22.一元二次方程教案.doc》由会员分享,可在线阅读,更多相关《22.一元二次方程教案.doc(20页珍藏版)》请在三一办公上搜索。

1、(人教版)数学九年级上册 第二十二章一元二次方程课题:22.1一元二次方程(第1课时)一、教学目标1.经历一元二次方程概念的形成过程,知道什么是一元二次方程.2.会把一元二次方程化成一般形式,并知道各项及系数的名称.二、教学重点和难点1.重点:一元二次方程的概念.2.难点:把一元二次方程化成一般形式.三、教学过程(一)创设情境,导入新课师:(板书:3x-5=0)这是一个什么方程?(稍停)3x-5=0是一个一元一次方程(板书:一元一次方程).师:哪位同学知道什么样的方程是一元一次方程?生:(让几名同学回答)师:(指准3x-5=0)只含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程.(

2、指准“一元一次方程”)一元指的是含有一个未知数,一次指的是未知数的次数是1.师:一元一次方程是我们在初一已经学过的,从今天开始,我们要学习一种新的方程,叫做一元二次方程(板书:一元二次方程).(二)尝试指导,讲授新课师:什么样的方程是一元二次方程?(板书:x2-x=56)x2-x=56是一个一元二次方程,(板书:4x2-9=0)4x2-9=0也是一元二次方程,(板书:x2+3x=0)x2+3x=0也是一元二次方程,(板书:3y2-5y=7)3y2-5y=7也是一元二次方程.师:从这些一元二次方程,哪位同学能概括什么样的方程是一元二次方程?(等到有一部分同学举手再叫学生)生:(多让几名同学回答)

3、师:(指准x2-x=56)只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程. (师出示下面的板书) 只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.师:请大家把一元二次方程的定义读两遍.(生读)师:根据一元二次方程的定义,(指准方程)我们很容易判断x2-x=56,4x2-9=0,x2+3x=0,3y2-5y=7这些方程都是一元二次方程.(板书:3x(x-1)=5(x+2))现在请大家判断,这个方程是不是一元二次方程?为什么?(让生思考一会儿)生:(让几名学生发表看法)师:把这个方程两边去括号,得到3x2-3x=5x+10(边讲边板书:3x2-3x=5x

4、+10),去括号后容易看出,这个方程是一元二次方程.师:(指3x2-3x=5x+10)这个方程还可以继续整理,怎么继续整理?(指准方程)先把右边的5x和10都移到左边去,再合并,得到3x2-8x-10=0(边讲边板书:3x2-8x-10=0).师:(指原方程和3x2-8x-10=0)大家可以比较这两个方程,这个方程是这个方程经过整理得到的,这个方程的形式又简单又整齐,我们把这种形式叫做一元二次方程的一般形式(板书:一元二次方程的一般形式).师:从这个例子大家可以看到,任何一个一元二次方程,经过整理,都可以化成一般形式,一般形式就是ax2+bx+c=0这样的形式(边讲边板书:ax2+bx+c=0

5、).师:(指准ax2+bx+c=0)在一元二次方程的一般形式中,我们把ax2叫做二次项,a是二次项系数(板书:其中a是二次项系数);bx叫做一次项,b是一次项系数(板书:b是一次项系数);c叫做常数项(板书:c是常数项).师:(指准3x2-8x-10=0)譬如,在这个方程中,二次项是3x2,二次项系数是3;一次项是-8x,一次项系数是-8;常数项是-10.师:(指x2+3x=0)大家看这个方程,它的二次项、二次项系数是什么?生:二次项是x2,二次项系数是1.(多让几名同学回答)师:(指x2+3x=0)它的一次项、一次项系数是什么?生:一次项是3x,一次项系数是3.(多让几名同学回答)师:(指x

6、2+3x=0)它的常数项是什么?生:常数项是0.(多让几名同学回答,如有必要师作解释)师:(指4x2-9=0)大家再看这个方程,它的二次项、二次项系数是什么?生:二次项是4x2,二次项系数是4.师:(指4x2-9=0)它的一次项、一次项系数是什么?生:(多让几名同学回答)师:这个方程的一次项可以写成0x(边讲边板书:0x),所以这个方程的一次项是0x,一次项系数是0.师:(指4x2-9=0)它的常数项是什么?生:常数项是-9.师:前面我们学习了一元二次方程的概念和一般形式,下面请大家利用这些知识来做几个练习.(三)试探练习,回授调节1.填空: (1)把5x2-1=4x化成一元二次方程的一般形式

7、,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (2)把4x2=81化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (3)把x(x+2)=15化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 .2.填空: (1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是 ; (2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一

8、元二次方程是 ; (3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是 ; (4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .(四)归纳小结,布置作业师:这节课我们学习了什么?哪位同学能帮老师小结一下?生:(让一两名学生小结) (作业:P28习题1)四、板书设计一元一次方程:3x-5=0 3x(x-1)=5(x+2)一元二次方程:x2-x=56 3x2-3x=5x+104x2-9=0 3x2-8x-10=0x2+3x=0 一元二次方程的一般形式:3y2-5y=7 ax2+bx+c=0,其中a是二次项系数,b是

9、一次项系只含有一个未知数叫做 数,c是常数项一元二次方程. 课题:22.1一元二次方程(第2课时)一、教学目标1.知道什么是一元二次方程的解(根).2.会用直接开平方法解一元二次方程,渗透转化思想.二、教学重点和难点1.重点:一元二次方程解(根)的概念,直接开平方法.2.难点:直接开平方法. 三、教学过程(一)基本训练,巩固旧知1.填空: (1)只含有 个未知数,并且未知数的最高次数是 的方程,叫做一元二次方程; (2)ax2+bx+c=0(a0)这种形式叫做一元二次方程的 形式,其中 是二次项系数, 是一次项系数, 是常数项.2.填空: (1)把(x+3)(x-4)=0化成一元二次方程的一般

10、形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 .(二)尝试指导,讲授新课师:(板书:2x-6=0)这是一个一元一次方程,这个方程的解是什么?生:(齐答)解是x=3.(师板书:解是x=3)师:(指准方程)2x-6=0的解是x=3,这话是什么意思?(稍停)把x=3代入方程,左边=23-6=0,右边=0,左边和右边恰好相等.2x-6=0的解x=3,意思是,x=3能使方程左右两边恰好相等.师:(板书:x2-x=0)这是一个一元二次方程,这个方程的解是什么?(让生思考一会儿

11、再叫学生)生:解是x=0.(师板书:x=0)师:(指准方程)把x=0代入方程,左边和右边相等,所以x=0是这个一元二次方程的一个解.师:除了x=0,这个方程还有没有别的的解?生:x=1.(师板书:x=1)师:(指准方程)把x=1代入方程,左边和右边相等,所以x=1也是这个一元二次方程的一个解.师:可见x2-x=0有两个解,一个解x1=0(边讲边标下标),另一个解x2=1(边讲边标下标).师:一元二次方程的解也叫做一元二次方程的根(板书:(根),所以也可以这样说,(指准板书)x2-x=0有两个根,一个根x1是0,另一个根x2是1.师:下面请同学们做一个练习.(三)试探练习,回授调节3.填空:在-

12、4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .(四)尝试指导,讲授新课师:(板书:x2-36=0)刚才我们求了x2-36=0这个一元二次方程的两个根,x1=6,x2=-6.我们是怎么求的?我们是通过凑数字求的.大家可以想到,凑数字求根是有局限性的,什么局限性?(稍停)通过凑数字只能求那些很简单的一元二次方程的根,如果方程稍微复杂一点,数字就不好凑了.譬如,我们把右边的0改为2x(边讲边把x2-36=0中的0改为2x),x2-36=2x这个方程就很难用凑数字来求根.所以,求一元二次方程的根不能光靠

13、凑数字,还需要有专门的方法.师:解一元二次方程的方法有好几种,下面我们先来介绍第一种方法,叫直接开平方法(板书:直接开平方法).师:怎么用直接开平方法解一元二次方程?(稍停)让我们来看一个例子. (师出示例题)例 解下列一元二次方程: (1)4x2-9=0; (2)3(2x-1)2=15. (师边讲解边板书,解题过程如下所示) 解:(1)原方程化成. 开平方,得, x1=,x2=-.(2)原方程化成. 开平方,得, x1=,x2=.师:(指准例题)从这两个题目,哪位同学会概括用直接开平方法解一元二次方程的步骤?生:(让一两名好生概括)师:(指准例题)用直接开平方法解一元二次方程,有三步,第一步

14、把原方程化成x2=常数,或者含x的式子的平方=常数的形式(板书:第一步:化成什么2常数);第二步开平方,把一元二次方程化成一元一次方程(板书:第二步:开平方);第三步解一元一次方程,得到两个根(板书:第三步:解一元一次方程).师:下面请同学们按这三步来做两个题目.(五)试探练习,回授调节5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 . 开平方,得 , x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 . 开平方,得 , x1= ,x2= .(六)归纳小结,布置作业师:(指准板书)本节课我们学习了一元二次方程根的概念,还学习了用直接开平方法解一元二次方

15、程.用直接开平方法解一元二次方程有这么三步,第一步把原方程化成什么2=常数这种形式;第二步开平方,把一元二次方程化成一元一次方程,也就是把二次降为一次(板书:降次);第三步解一元一次方程,得到两个根. (作业:P28习题3,P42习题1)四、板书设计2x-6=0解是x=3 直接开平方法 例x2-x=0解是x1=0,x2=1 第一步:化成什么2常数;x2-36=2x 第二步:开平方,降次; 第三步:解一元一次方程. 课题:22.2.1配方法(第1课时)一、教学目标1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、教学重点和难点1.重点:用配方法

16、解一元二次方程.2.难点:配方.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 . 开平方,得 , x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 . 开平方,得 , x1= ,x2= .(二)尝试指导,讲授新课 (师出示下面的板书) 直接开平方法: 第一步:化成什么2常数; 第二步:开平方降次; 第三步:解一元一次方程.师:上节课我们学习了用直接开平方法解一元二次方程.(指准板书)用直接开平方法解一元二次方程有这么三步,第一步化成什么2常数;第二步开平方降次,把一元二次方程转化为一元一次方程;第三步解一元一次

17、方程,得到两个根.师:按这三步,我们来做一个题目. (师出示例1)例1 解方程:x2-4x+4=5. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:原方程化成(x-2)2=5. 开平方,得x-2=, x1=+2,x2=-+2.(三)试探练习,回授调节2.完成下面的解题过程: 解方程:9x2+6x+1=4;解:原方程化成 . 开平方,得 , x1= ,x2= .(四)尝试指导,讲授新课师:下面我们再来做一个题目. (师出示例2)例2 解方程:x2+6x-16=0.师:(指准板书)怎么解这个一元二次方程?(稍停)还是要按这三步来做.按这三步来做,关键是哪一步?(稍停)关键是第一步,把方程化

18、成什么2常数的这种样子,也就是左边化成含有x的式子的平方,右边是一个常数这种样子.怎么化呢?大家自己先化一化.(生尝试,师巡视)师:下面我们一起来化.师:(指准方程)要把这个方程化成什么2常数这种样子,首先要把常数项移到右边去(板书:解:移项,得x2+6x=16),然后在这个方程的两边加上32(板书:x2+6x+32=16+32),左边x2+6x+32等于什么?(稍停)等于(x+3)2(边讲边板书:(x+3)2),右边16+32等于25(边讲边板书:25).这样我们把原方程化成了含有x的式子的平方常数这种样子.师:方程化成这种样子,下面就很好做了.开平方,得x+3=5(边讲边板书:开平方,得x

19、+3=5),解一元一次方程,得到两个根,x1=2,x2=-8(边讲边板书:x1=2,x2=-8).师:(指准解题过程)这个题目做完了,通过做这个题目,大家不难发现,解这个题目的关键是在方程两边加上32,把方程的左边配成(x+3)2.这样做叫什么?叫配方(板书:配方).师:像这道例题那样,通过把方程左边配成平方形式来解一元二次方程的方法,叫配方法(板书:配方法).师:下面请大家做几个有关配方法的练习.(五)试探练习,回授调节3.填空: (1)x2+2x2+ =(x+ )2; (2)x2-2x6+ =(x- )2; (3)x2+10x+ =(x+ )2; (4)x2-8x+ =(x- )2.4.完

20、成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 . 配方,得 , . 开平方,得 , x1= ,x2= .5.用配方法解方程:x2+10x+9=0.(六)归纳小结,布置作业师:这节课我们学习了什么?(稍停)我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?(指准板书)和直接开平方法一样,都是这么三步,所不同的是,直接开平方法很容易把原方程化成什么2常数这种样子,而配方法需要通过配方才能把原方程化成这种样子. 课外补充作业:6.填空: (1)x2-2x3+ =(x- )2; (2)x2+2x4+ =(x+ )2; (3)x2-4x+ =(x- )2; (4)x2+14x+

21、 =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 . 配方,得 , . 开平方,得 , x1= ,x2= .8.用配方法解方程:x2-6x+7=0.四、板书设计直接开平方法、配方法 例1 例2第一步:化成什么2常数;第二步:开平方降次;第三步:解一元一次方程. 课题:22.2.1配方法(第2课时)一、教学目标1.会用配方法解一元二次方程(二次项系数不为1).2.培养数感和运算能力.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方法.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,

22、得 . 配方,得 , . 开平方,得 , x1= ,x2= .2.填空: (1)x2-2x+ =(x- )2; (2)x2+5x+ =(x+ )2; (3)x2-x+ =(x- )2; (4)x2+x+ =(x+ )2. (订正时告诉学生,加上的那个数是一次项系数一半的平方)(二)尝试指导,讲授新课 (师出示下面的板书) 配方法 第一步:化成什么2常数; 第二步:开平方降次; 第三步:解一元一次方程.师:(指准板书)上节课我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?有这么三步,第一步:通过移项、配方把原方程化成什么2常数这种样子;第二步:开平方,把一元二次方程转化为一元一次方

23、程;第三步:解一元一次方程,得到两个根.在这三步中,第一步中的配方是关键,所以这种解法叫做配方法.师:下面我们用配方法再来解几个一元二次方程,先看例1. (师出示例1)(三)尝试指导,讲授新课例1 用配方法解方程:x2+5x+=0. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:移项,得x2+5x=-. 配方 x2+5x+=-+, . 开平方,得x+=, x1=,x2=.(四)试探练习,回授调节3.完成下面的解题过程: 用配方法解方程:x2-x-=0.解:移项,得 .配方 , . 开平方,得 , x1= ,x2= .(五)尝试指导,讲授新课师:下面我们再来做一个题目. (师出示例2)例

24、2 用配方法解方程:2x2+1=3x.师:(指准方程)这个方程与例1这个方程有点区别,区别在哪儿?(稍停)区别主要是,例1这个方程的二次项系数是1,而这个方程的二次项系数不是1.怎么办?我们可以设法把这个方程二次项系数化为1.下面大家自己先试着做一做. (以下生尝试,然后师边讲解边板书,解题过程如下) 解:移项,得2x2-3x=-1. 二次项系数化为1,得. 配方 , 开平方,得, x1=1, x2=.(六)试探练习,回授调节4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0. 解:移项,得 . 二次项系数化为1,得 . 配方 , . 开平方,得 , x1= ,x2= .5.用配方法

25、解方程:9x2-6x-8=0.(七)归纳小结,布置作业师:这节课我们继续学习了用配方法解一元二次方程,(指板书)用配方法解一元二次方程就这么三步,解题的关键是第一步.怎么做第一步?(指例2)先移项,再把二次项系数化为1,然后配方.配方时,要在方程两边加上一次项系数一半的平方. (作业:P42习题2.3.)四、板书设计配方法 例1 例2第一步:化成什么2常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第3课时)一、教学目标1.会先整理再用配方法解一元二次方程(包括没有实数根的情况).2.培养数感和运算能力.二、教学重点和难点1.重点:先整理再用配方法解一元二次方程.2

26、.难点:没有实数根的情况.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:3x2+6x4=0. 解:移项,得 . 二次项系数化为1,得 . 配方 , . 开平方,得 , x1= ,x2= .(二)创设情境,导入新课师:上节课我们用配方法解了几个一元二次方程,这节课我们用配方法再来做几个题目.(三)尝试指导,讲授新课 (师出示例题)例 用配方法解方程:(1)(x-2)(x+3)=6;(2)3x(x-1)=3x-4. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:(1)整理,得x2+x-12=0.移项,得x2+x=12. 配方 x2+x+=12+, . 开平方,

27、得x+=, x1=3, x2=-4.(2)整理,得3x2-6x+4=0.移项,得3x2-6x=-4.二次项系数化为1,得 配方 , . 原方程没有实数根.师:例题做完了,从这个例题,谁能概括怎么用配方法解一元二次方程?(让生思考一会儿,再叫学生)生:(让一两名好生回答)师:用配方法解一元二次方程,(指准例2)第一步要把原方程化成什么2常数这种样子,怎么化呢?(稍停)先整理,把原方程化成一元一次方程的一般形式;再移项;然后把二次项系数化为1;然后再配方,配方时,在方程两边加上一次项系数一半的平方.第一步完成后,看右边的常数,如果右边的常数为负数,说明原方程没有实数根;(指准例1)如果右边的常数为

28、非负数,则继续第二步第三步,第二步开平方,第三步解一元一次方程得到两个实数根.(四)试探练习,回授调节2.完成下面的解题过程: 用配方法解方程:(2x-1)2=4x+9. 解:整理,得 .移项,得 . 二次项系数化为1,得 . 配方 , . 开平方,得 , x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.(五)归纳小结,布置作业师:本节课我们用配方法解了几个一元二次方程,通过做题,同桌之间互相说一说,怎么用配方法解一元二次方程?(同桌之间互相说) (作业:P34练习2(5)(6))四、板书设计(略) 课题:22.2.2公式法(第1课时)一、教学目标1.经历一元二次方程求

29、根的推导过程,会用公式法解一元二次方程.2.发展符号感.二、教学重点和难点1.重点:一元二次方程求根公式的推导和运用.2.难点:一元二次方程求根公式的推导.三、教学过程(一)尝试指导,讲授新课师:(板书:ax2+bx+c=0,并指准)这是一个一元二次方程,x是未知数,a,b,c都是常数,而且a0(板书:(a0)).怎么用配方法来解这个一元二次方程?大家自己先试一试. (生尝试,师巡视,要给学生充足的尝试时间)师:我们一起来解这个一元二次方程.首先我们要把这个方程化成什么2=常数这种样子,怎么化呢?师:先把常数项c移到右边(板书:移项,得ax2+bx=-c).师:再把二次项系数化为1,得(板书:

30、二次项系数化为1,得).师:然后配方(板书:配方),怎么配方?(稍停)在方程两边加上一次项系数一半的平方(板书:),左边是(板书:=),右边=(边讲边在黑板的其它地方板演),所以=(边讲边板书:).师:(指准板书)通过移项、二次项系数化为1、配方,现在我们把原方程化成了什么2=常数这种形式,接下来怎么做呢?师:(指准方程)接下来开平方(板书:开平方,得),(边讲边板书:),这个二次根式还可以化简,化简结果是(边讲边将上面的二次根式改写成).师:(指准方程)把移到方程右边去,可以解出x,(边讲边板书:).师:(边讲边板书),(边讲边板书).师:(指准板书)这个方程解完了,通过解这个方程我们得出,

31、一元二次方程ax2+bx+c=0的两个根是(在这个式子外加框).师:(指ax2+bx+c=0)忙乎了半天,有的同学可能会问:这个方程尽是字母,很难解,解它有什么用?是啊,大家想一想,解这个方程有什么用啊?(让生思考一会儿,再叫学生)生:(让几名同学发表看法)师:以前我们解一元二次方程用的是配方法,要一步一步来解,过程比较麻烦.现在好了,通过解这个方程,(指准求根公式)有了这个式子,只需要把二次项系数a、一次项系数b、常数项c代入这个式子,就可以求出根.因为利用这个式子可直接求根,所以我们把这个式子叫做一元二次方程的求根公式(板书:求根公式).师:(指求根公式)求根公式挺复杂,大家把求根公式写一

32、写,记一记,熟悉熟悉.(生熟悉公式)师:下面我们利用求根公式来解几个一元二次方程. (师出示例题)例 利用求根公式解下列方程: (1)x2-4x-7=0; (2)5x2-3x=x+1;(3)2x2-2x+1=0; (4)x2+17=8x.师:(指(1)题)怎么利用求根公式解这个一元二次方程?(板书:解:(1))师:(指(1)题)首先要找出这个方程的二次项系数a、一次项系数b、常数项c,这个方程的a,b,c等于什么?生:a=1,b=-4,c=-7(生答师板书:a=1,b=-4,c=-7).师:找出了a,b,c,接下来干什么?接下来要计算b2-4ac的值(板书:b2-4ac=). b2-4ac=(

33、-4)2-41(-7)=44(边讲边板书:(-4)2-41(-7)=44)师:大家可能觉得有点奇怪,找出了a,b,c,为什么不把a,b,c直接代入求根公式,而是先计算b2-4ac的值?(稍停后指准求根公式)大家看求根公式,公式中这个二次根式的被开方数是b2-4ac,可见b2-4ac必须大于等于0.计算b2-4ac的目的是什么?目的是看一看b2-4ac的值是大于等于0还是小于0.如果b2-4ac的值大于等于0,下一步才把a,b,c代入求根公式;如果b2-4ac的值小于0,这个二次根式没有意义,说明方程没有实数根.总之,要根据b2-4ac值的符号来决定下一步怎么做,所以不能直接把a,b,c代入求根

34、公式,先要求b2-4ac的值.师:(指准板书)这个方程的b2-4ac等于44,大于0(边讲边板书:0),所以下一步可以把a,b,c代入求根公式.师:(边讲边板书).师:,(边讲边板书). (以下师边讲解边板书其它各题,解题过程如下) (2)整理,得5x2-4x-1=0. a=5,b=-4,c=-1, b2-4ac=(-4)2-45(-1)=360. , ,. (3)a=2,b=-2,c=1, b2-4ac=(-2)2-421=0. , . (4)整理,得x2-8x+17=0. a=1,b=-8,c=17, b2-4ac=(-8)2-4117=-40. 方程没有实数根.(二)试探练习,回授调节1

35、.完成下面的解题过程: 利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= . b2-4ac= = 0. , ,.2.利用求根公式解下列方程: (1); (2); (3)3x2-4x+2=0;(三)归纳小结,布置作业师:本节课我们学习了利用求根公式解一元二次方程,利用求根公式解一元二次方程,这种方法叫公式法(板书课题:22.2.2公式法).师:和配方法相比,用公式法解一元二次方程要简单得多,不过我们还要看到,公式法所用的求根公式是用配方法推导出来的,所以我们说,公式法更简单,配方法更基本. (作业:P42习题5(1)(2)(5)(6))四、板书设计(略)22.2.2公式法ax2+b

36、x+c=0(a0) 例移项,得二次项系数化为1,得配方开平方,得 x1=x2= 课题:22.2.2公式法(第2课时)一、教学目标1.会较熟练地用公式法解一元二次方程.2.知道什么是判别式,会根据判别式的值确定解的情况.二、教学重点和难点1.重点:根据判别式的值确定解的情况.2.难点:根据判别式的值确定解的情况.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程: 用公式法解下列方程:(1)2x2-3x-2=0.解:a= ,b= ,c= . b2-4ac= = 0. , ,.(2)x(2x-)=x-3.解:整理,得 .a= ,b= ,c= . b2-4ac= = . , .(3)(x-2

37、)2=x-3.解:整理,得 .a= ,b= ,c= . b2-4ac= = 0. 方程 实数根.(二)尝试指导,讲授新课 (师出示下面的板书) 一元二次方程ax2+bx+c=0 (1)当b2-4ac 时,方程有两个不相等的实数根; (2)当b2-4ac 时,方程有两个相等的实数根; (3)当b2-4ac 时,方程没有实数根.师:刚才我们解了个一元二次方程,我们是怎么解方程的?(稍停)师:(指准板书)首先我们把方程化成一元二次方程的一般形式,也就是ax2+bx+c=0这样的形式.师:然后计算b2-4ac的值,(指准板书)当b2-4ac的值怎么样时,方程有两个不相等的实数根?生:当b2-4ac0时(多让几名同学回答,然后师填入:0).师:(指准板书)当b2-4ac的值怎么样时,方程有两个相等的实数根?生:当b2-4ac0时(多让几名同学回答,然后师填入:0).师:(指准板书)当b2-4ac的值怎么样时,方程没有实数根?生:当b2-4ac0时(生答师填入:0).师:(指板书)通过解一元二次方程,我们得到了这个的结论,请大家一起来把这个结论读两遍.(生读)师:(指板书)这是一个很重要的结论,这个结论告诉我们,一元二次方程根的情况由式子b2-4ac决定,所以我们把式子b2-4ac叫做一元二次方程根的判别式(板书:b2-4ac叫做根的判别式),记作(板书:记

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号