函数的最大(小)值与导数(IV).ppt

上传人:小飞机 文档编号:6407600 上传时间:2023-10-27 格式:PPT 页数:26 大小:422KB
返回 下载 相关 举报
函数的最大(小)值与导数(IV).ppt_第1页
第1页 / 共26页
函数的最大(小)值与导数(IV).ppt_第2页
第2页 / 共26页
函数的最大(小)值与导数(IV).ppt_第3页
第3页 / 共26页
函数的最大(小)值与导数(IV).ppt_第4页
第4页 / 共26页
函数的最大(小)值与导数(IV).ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《函数的最大(小)值与导数(IV).ppt》由会员分享,可在线阅读,更多相关《函数的最大(小)值与导数(IV).ppt(26页珍藏版)》请在三一办公上搜索。

1、函数的最大(小)值与导数,f(x)0,f(x)0,复习:一、函数单调性与导数关系,如果在某个区间内恒有,则 为常数.,设函数y=f(x)在 某个区间 内可导,,f(x)为增函数,f(x)为减函数,二、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);,函数的极大值与极小值统称 为极值.,使函数取得极值的点x0称为极值点,观察下列图形,你能找出函数的极值吗?,观察图象

2、,我们发现,是函数y=f(x)的极小值,是函数y=f(x)的 极大值。,求解函数极值的一般步骤:(1)确定函数的定义域(2)求函数的导数f(x)(3)求方程f(x)=0的根(4)用方程f(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f(x)在方程f(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况,左正右负极大值,左负右正极小值,在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题,函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?,新 课 引 入,极

3、值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,知识回顾,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,1最大值:,(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M,那么,称M是函数y=f(x)的最大值,2最小值:,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M,那么,称M是函数y=f(x)的最小值,观察下列图形,你能找出函数的最值吗?,在开区间内的连续函数不一定有最大值与最小值.,在闭区

4、间上的连续函数必有最大值与最小值,如何求出函数在a,b上的最值?,一般的如果在区间,a,b上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。,观察右边一个定义在区间a,b上的函数y=f(x)的图象:,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的 一个最小值.,求f(x)在闭区间a,b上的最值的步骤:,(1)求f(x)在区间(a,b)内极值(极大值或极小值);,新授课,求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范

5、围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,题型:求函数的最大值和最小值,1、求出所有导数为0的点;,2、计算;,3、比较确定最值。,例2:求函数y=x4-2x2+5在区间-2,2上的最大值与最小值.,解:,令,解得x=-1,0,1.,当x变化时,的变化情况如下

6、表:,从上表可知,最大值是13,最小值是4.,题型:求函数的最大值和最小值,练习:函数 y=x+3 x9x在 4,4 上的最大值为,最小值为.,分析:(1)由 f(x)=3x+6x9=0,(2)区间4,4 端点处的函数值为 f(4)=20,f(4)=76,得x1=3,x2=1,函数值为f(3)=27,f(1)=5,76,-5,当x变化时,y、y的变化情况如下表:,比较以上各函数值,可知函数在4,4 上的最大值为 f(4)=76,最小值为 f(1)=5,练习:,求下列函数在给定区间上的最大值与最小值:,54,-54,22,-10,2,-18,a,a-40,典型例题,反思:本题属于逆向探究题型:其

7、基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。,拓展提高,1、我们知道,如果在闭区间【a,b】上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把闭区间【a,b】换成开区间(a,b)是否一定有最值呢?如下图:,不一定,2、函数f(x)有一个极值点时,极值点必定是最值点。,3、如果函数f(x)在开区间(a,b)上只有一个极值点,那么这个极值点必定是最值点。,有两个极值点时,函数有无最值情况不定。,动手试试,4、函数y=x3-3x2,在2,4上的最大值为()(A)-4(B)0(C)16(D)20,C,1.求函数f(x)=x2-4x+6在

8、区间1,5内的极值与最值,故函数f(x)在区间1,5内的极小值为3,最大值为11,最小值为2,解法二:,f(x)=2x-4,令f(x)=0,即2x-4=0,,得x=2,-,+,3,11,2,选做题:,解法一:将二次函数f(x)=x2-4x+6配方,利用二次函数单调性处理,2、,解,令,解得,x,0,(0,),(,),+,-,+,0,0,(,),0,应用,(2009年天津(文)21T),答:(1)斜率为1;,(2),(04浙江文21)(本题满分12分)已知a为实数,()求导数;()若,求 在-2,2上的最大值和最小值;()若 在(-,-2和2,+)上都是递增的,求a的取值范围。,一.是利用函数性质二.是利用不等式三.是利用导数,求函数最值的一般方法,小结:,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号